

ibm.com/redbooks

Domino Designer 6:
A Developer’s Handbook

Tommi Tulisalo
Rune Carlsen

Andre Guirard
Pekka Hartikainen

Grant McCarthy
Gustavo Pecly

Develop applications for Notes, Web
and Mobile clients

Programming with Domino
Designer 6

New features of Domino 6

Front cover

Domino Designer 6: A Developer’s Handbook

December 2002

International Technical Support Organization

SG24-6854-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2002)

This edition applies to IBM Lotus Domino Designer 6.0 and IBM Lotus Domino 6.0.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

Contents

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xix
Become a published author . xxi
Comments welcome. xxi

Chapter 1. What is Lotus Notes/Domino . 1
1.1 Domino 6 Server . 2

1.1.1 Domino Messaging Server . 2
1.1.2 Domino Enterprise Server . 2
1.1.3 Domino Utility Server . 2
1.1.4 Services offered by Domino Servers. 2

1.2 Clients for Domino 6 . 5
1.2.1 Lotus Notes 6 . 5
1.2.2 Domino Designer 6 . 8
1.2.3 Domino Administrator 6. 8
1.2.4 Mobile clients . 9
1.2.5 iNotes . 10

Chapter 2. Lotus Domino Designer . 13
2.1 Overview . 14
2.2 Working in Domino Designer. 14

2.2.1 Launching Domino Designer. 14
2.2.2 The Domino Designer client . 16
2.2.3 The Design pane. 17
2.2.4 The tabbed windows . 19
2.2.5 The Bookmark folders . 20
2.2.6 The Design elements folders . 21
2.2.7 The Properties dialog . 22
2.2.8 Design element locking . 26
2.2.9 The Launch buttons . 27
2.2.10 The Programmer’s Pane . 28

2.3 Domino Design elements . 31
2.3.1 The Domino database. 31
2.3.2 Frameset . 31
2.3.3 Pages . 32
2.3.4 Forms . 32
© Copyright IBM Corp. 2002. All rights reserved. iii

2.3.5 Views. 33
2.3.6 Folders . 33
2.3.7 Shared code . 33
2.3.8 Shared resources . 34
2.3.9 Other . 35

2.4 New elements of Domino Designer 6 . 36
2.4.1 Cascading style sheet (CSS) . 36
2.4.2 Layers . 37
2.4.3 Shared code and shared resources . 37
2.4.4 LotusScript, JavaScript and Java libraries . 37
2.4.5 Data connections . 37
2.4.6 DXL utilities . 38
2.4.7 JSP custom tag libraries . 38

2.5 Industry Standards support . 38
2.6 Multi-client applications support . 39
2.7 Multilingual applications support . 39
2.8 Easy access to enterprise data and applications 40
2.9 Developing for mixed releases of clients . 41

2.9.1 On-Disk Structure . 42

Chapter 3. Domino Design elements: basics . 47
3.1 Domino databases . 48

3.1.1 Creating a database . 48
3.1.2 Changing the database properties . 59

3.2 Using Design Synopsis . 71
3.3 Summary . 74

Chapter 4. Domino Design elements: forms. 75
4.1 Forms . 76

4.1.1 Specifying form properties . 76
4.1.2 Giving the form a window title . 92
4.1.3 Form events . 92

4.2 Creating a field . 95
4.2.1 Performing a test run. 98
4.2.2 Sharing and reusing a field . 101
4.2.3 Field types. 102
4.2.4 Field properties . 107
4.2.5 Special fields . 115
4.2.6 Field events . 120
4.2.7 Examples using different field types and events 122

4.3 Sharing design elements with subforms . 125
4.3.1 Creating a new subform . 126
4.3.2 Removing subforms . 127
iv Domino Designer 6: A Developer’s Handbook

4.3.3 Adding subforms to a form . 127
4.4 Displaying a different form to Web, Notes, and mobile users 130
4.5 Layout regions. 131
4.6 Working with collapsible sections . 132

4.6.1 Creating a collapsible section . 132
4.7 Using tables. 133

4.7.1 Creating tables within tables . 133
4.7.2 Merging and splitting cells . 134
4.7.3 Table properties . 136

4.8 Actions. 146
4.8.1 Creating an action . 147
4.8.2 Removing an action . 148
4.8.3 Action properties . 148
4.8.4 Action bar properties . 149

4.9 Embedded elements . 150
4.9.1 Embedded editors . 151
4.9.2 Embedded navigators . 151
4.9.3 Embedded date picker . 152
4.9.4 Embedded outline control . 152
4.9.5 Embedded view. 152
4.9.6 Embedded group scheduling control. 153
4.9.7 Embedded folder pane . 153
4.9.8 Embedded file upload control . 155

4.10 Other features of forms . 155
4.10.1 Horizontal rules . 156
4.10.2 Computed text . 156
4.10.3 Buttons, Action bar buttons, and hotspots 158

4.11 Images within forms . 161
4.11.1 Copying images . 162
4.11.2 Importing pictures . 162
4.11.3 Using Image Resource . 162
4.11.4 Alternate text . 163

4.12 Using CGI variables . 164
4.12.1 Table of CGI variables supported by Domino 164
4.12.2 Using a field to capture CGI variables. 167
4.12.3 Using a LotusScript agent to capture CGI variables 167

4.13 Profile documents . 168
4.13.1 Creating a profile form. 169
4.13.2 Creating and retrieving profile documents using LotusScript 169

4.14 New features in Domino Designer 6 . 171
4.15 Summary . 172

Chapter 5. Domino Design elements: pages . 173
 Contents v

5.1 What is a page . 174
5.2 Creating a new page . 174

5.2.1 Specifying page properties . 175
5.3 Page events . 178
5.4 Using pages . 178

5.4.1 Launching pages. 180
5.5 New features in Domino Designer 6 . 181
5.6 Summary . 181

Chapter 6. Domino Design elements: views, folders, and navigators . . 183
6.1 Design elements defined. 184

6.1.1 What is a view . 184
6.1.2 What is a folder . 185
6.1.3 What is an outline . 185
6.1.4 What is a navigator . 186

6.2 Creating views. 187
6.2.1 Working with view properties . 190
6.2.2 Editing View columns . 200
6.2.3 Creating Calendar views . 205
6.2.4 View summary. 208

6.3 Shared views and private views . 210
6.3.1 Shared views. 210
6.3.2 Shared, Personal-on-first-use views . 210
6.3.3 Personal views . 211

6.4 Creating a button on the Action bar. 211
6.5 Working with views as a developer . 213
6.6 Views and the Web . 215

6.6.1 Using the default display . 215
6.6.2 Using HTML formatting for views . 218

6.7 Hints and tips on designing views . 223
6.7.1 Naming views . 223
6.7.2 Overview of styles . 224
6.7.3 Identifying unread documents . 227
6.7.4 Using categories in views . 228
6.7.5 Presenting views to users . 229
6.7.6 Embedding views . 230
6.7.7 Formatting date and time columns . 233
6.7.8 Formatting numbers in columns . 235
6.7.9 Indenting Response documents . 236
6.7.10 Sorting documents in views . 237

6.8 Designing a folder . 239
6.9 Managing access to views and folders . 240

6.9.1 Creating a Read access list . 240
vi Domino Designer 6: A Developer’s Handbook

6.9.2 Creating a Write access list. 241
6.10 Using navigators . 242

6.10.1 Navigator objects . 242
6.10.2 Navigator actions . 242
6.10.3 Creating a navigator . 243
6.10.4 Adding an action to a navigator object . 244
6.10.5 Adding an action using @Functions or LotusScript 244
6.10.6 Displaying navigator when a database is opened 245

6.11 New features in Domino 6 . 245
6.12 Summary . 245

Chapter 7. Domino Design elements: agents . 247
7.1 About Domino agents . 248
7.2 Access to create Domino agents. 248

7.2.1 Restricted and unrestricted agents, methods and operations. 249
7.3 Creating an agent . 250

7.3.1 Naming the agent . 251
7.3.2 Scheduling the agent . 253
7.3.3 Selecting documents to be processed . 256
7.3.4 Specifying what an agent should do . 259
7.3.5 Displaying the pop-up menu of an agent . 262
7.3.6 Signing an agent . 264

7.4 Testing an agent . 265
7.4.1 Testing an agent during development. 265
7.4.2 Testing an agent before copying it to a live database. 265
7.4.3 Checking the Agent Log . 265
7.4.4 Debugging agents . 266

7.5 Enabling and disabling scheduled agents . 268
7.5.1 To disable and enable individual agents . 269
7.5.2 To disable all automated agents in a database. 270

7.6 Troubleshooting agents. 270
7.6.1 Agent is not running . 270
7.6.2 Agent Manager is not working. 271
7.6.3 Agents are running slowly . 271
7.6.4 Agent will not run on a particular server . 271
7.6.5 Debugging with NOTES.INI settings . 272
7.6.6 Debugging at the server console . 273

7.7 Agents and the Web . 274
7.7.1 The Document Context of a Web agent and CGI variables 275
7.7.2 Agent output . 276
7.7.3 Running multiple instances of an agent . 276
7.7.4 WebQueryOpen and WebQuerySave agents 277
7.7.5 Using the @URLOpen command to call agents 278
 Contents vii

7.8 Using agents (advanced topics) . 278
7.9 New features in Domino 6 . 280
7.10 Summary . 281

Chapter 8. Domino Design elements: framesets 283
8.1 Framesets . 284

8.1.1 Specifying frameset properties . 285
8.1.2 Specifying frame properties . 286

8.2 Changing the layout of a frameset . 296
8.3 New features in Domino Designer 6 . 302
8.4 Summary . 302

Chapter 9. Domino Design elements: outlines . 303
9.1 Outline Designer . 304
9.2 Creating a new outline. 307
9.3 Embedded Outline. 309

Chapter 10. Domino design elements: shared resources 317
10.1 Images. 318
10.2 Files. 322
10.3 Applets . 329
10.4 Style sheets. 330
10.5 Data connections. 335

10.5.1 Create a data source resource . 335
10.5.2 Create the DCR. 336
10.5.3 Set a database property . 337
10.5.4 Create fields on a form . 338

Chapter 11. Developing for multiple clients . 341
11.1 Plan your application . 342

11.1.1 Security settings . 342
11.1.2 Consider the use of graphics . 342
11.1.3 Examine your LotusScript code . 343

11.2 Designing the application . 343
11.2.1 Same or different forms for the Web and Notes 343
11.2.2 Choosing fields . 344
11.2.3 Choosing actions. 344
11.2.4 How to deal with the Notes views . 344
11.2.5 Need of miscellaneous forms . 344
11.2.6 Designing the agents . 345
11.2.7 Be aware of multiple lookups . 345
11.2.8 Developing for PDA and mobile clients . 346

11.3 Take advantage of Domino 6 . 346
11.4 Conclusion. 346
viii Domino Designer 6: A Developer’s Handbook

Chapter 12. New features in Domino 6 . 347
12.1 User interface . 348

12.1.1 New design element navigator . 348
12.1.2 Bookmarks . 351
12.1.3 Custom design element folders. 352
12.1.4 Mouseover information on design elements 354
12.1.5 Quick scroll . 354
12.1.6 Plus/minus indicators for the design list . 355
12.1.7 New features in design element views . 356
12.1.8 Modifying properties for multiple elements 356
12.1.9 Design element locking . 358
12.1.10 Printing enhancements . 361
12.1.11 Shading . 362

12.2 Design Synopsis . 363
12.3 New Domino 6 design elements . 365

12.3.1 Shared Resources . 365
12.3.2 Shared Code . 367

12.4 The event model . 367
12.4.1 Targeting your code . 368
12.4.2 Removed events . 368
12.4.3 New preferred events . 368
12.4.4 New events . 369

12.5 @functions and @commands . 370
12.5.1 Why use them . 370
12.5.2 Limitations . 370
12.5.3 New programming features. 371
12.5.4 New and enhanced @formulas and @commands 373
12.5.5 Looping . 382
12.5.6 Other enhancements. 383

12.6 LotusScript . 384
12.6.1 New classes . 384
12.6.2 Remote debugger . 387
12.6.3 Recompile all. 393
12.6.4 LotusScript to Java (LS2J) . 395
12.6.5 Automatically add Option Declare. 397
12.6.6 Language enhancements . 398

12.7 Auto complete . 399
12.7.1 LotusScript and auto complete . 401
12.7.2 HTML and auto complete . 403
12.7.3 Formulas and auto complete. 403

12.8 Agent enhancements . 404
12.8.1 New user interface . 404
12.8.2 Agent restriction list . 406
 Contents ix

12.8.3 Access remote servers . 407
12.8.4 Run on behalf of . 408
12.8.5 Script libraries . 408
12.8.6 User activation . 409
12.8.7 Agent security . 410
12.8.8 Converting shared and private agents . 410
12.8.9 New console commands . 411

12.9 HTML. 412
12.9.1 Enabling the HTML Pane . 412
12.9.2 Adding code using the HTML Pane . 414

12.10 New UI elements . 417
12.10.1 Layers . 417
12.10.2 New field types . 428
12.10.3 Embedded editor . 432

12.11 Outline enhancements . 435
12.11.1 Computed outlines . 435
12.11.2 Pop-up text . 435
12.11.3 Customizable twisties . 436
12.11.4 Show folder unread information . 436

12.12 Actions enhancements . 438
12.12.1 General changes. 438
12.12.2 Computed labels . 438
12.12.3 Menu separator . 439
12.12.4 Checkbox action . 439
12.12.5 Sub actions . 444
12.12.6 Other features and enhancements . 445

12.13 View enhancements . 445
12.13.1 Column colors . 445
12.13.2 Context-sensitive actions . 450
12.13.3 Customized icons . 451
12.13.4 Background images/grids . 452
12.13.5 Customize twisties . 453
12.13.6 User customizations . 453
12.13.7 Create document from view . 454
12.13.8 Editing a document in a view . 456
12.13.9 Hide columns on-the-fly . 459
12.13.10 Creating views programmatically . 460

12.14 Field enhancements . 461
12.14.1 Field hints . 461
12.14.2 Size options. 461
12.14.3 Alignment options . 462
12.14.4 Border styles . 463

12.15 Form enhancements . 464
x Domino Designer 6: A Developer’s Handbook

12.15.1 Render pass-through HTML in Notes . 464
12.16 Paragraph enhancements . 466

12.16.1 Language tagging . 466
12.16.2 Paragraph borders . 467
12.16.3 New section styles . 467

12.17 Embedded element enhancements. 469
12.17.1 Improved action bar support and enhanced styling 469
12.17.2 Cross-database referencing . 470
12.17.3 Multiple embedded views on a page or form 470
12.17.4 Deleting documents in an embedded view 470

12.18 Table enhancements. 471
12.18.1 Autosize width to content . 471
12.18.2 New options . 472
12.18.3 Caption style . 473

12.19 Frameset enhancements. 475
12.19.1 Collapsible and captionable frames . 475

12.20 Tools menu . 477
12.20.1 Add a tool . 477
12.20.2 Customize your tools. 479
12.20.3 DXL utilities . 487

12.21 URL enhancements. 490
12.21.1 New and enhanced URL commands . 490

12.22 WebDav. 490
12.23 Summary . 497

Chapter 13. Securing your Domino application . 499
13.1 Overview . 500
13.2 Controlling access to Domino data . 501

13.2.1 Overview of Domino Security architecture 501
13.3 Using the Access Control List to control access 504

13.3.1 Setting up and refining the ACL . 506
13.3.2 Roles in the ACL . 513
13.3.3 Enforce Consistent ACL . 516
13.3.4 Maximum Internet Name and Password access 517
13.3.5 Changing the ACL programmatically . 517

13.4 Using outline control to hide part of an Domino application 518
13.5 Using directory links to control access to a Domino application 519
13.6 Controlling access to views and forms . 520

13.6.1 Controlling access to forms. 521
13.6.2 Preventing printing, forwarding, and copying of documents 524

13.7 Controlling access to documents . 524
13.7.1 Editor access. 526
13.7.2 Combining Readers and Authors fields. 527
 Contents xi

13.7.3 Controlled access sections . 529
13.7.4 Use of Hide-When formulas . 530
13.7.5 Using encryption for field security . 530

13.8 Authentication on the Web . 533
13.8.1 HTTP Basic Authentication . 533
13.8.2 Session-based authentication . 534
13.8.3 Secure Sockets Layer (SSL). 535
13.8.4 Domino and SSL . 536
13.8.5 When to use Internet security . 537
13.8.6 Defining Web users. 537

13.9 Programming considerations. 538
13.9.1 Using @UserRoles . 538
13.9.2 Using @UserName . 540
13.9.3 Using @ClientType . 540
13.9.4 Using @UserNameList . 540
13.9.5 Password field . 541
13.9.6 Controlling if users paste documents into the database 541
13.9.7 Hiding the design of a database . 541

13.10 Other security options and considerations . 542
13.10.1 Using signatures for security . 542
13.10.2 Access control for HTML and other files 545
13.10.3 APIs for customized authentication, encryption, and signing . . . 547
13.10.4 Backup and restore . 548

13.11 Developing a plan for securing your application 548
13.11.1 Key design issues . 549
13.11.2 Distinguishing true security features . 552

13.12 New security features in Domino 6 . 553
13.13 Summary . 556

Chapter 14. Programming for Domino 6 . 557
14.1 Programming for Domino 6 . 558

14.1.1 Choosing a programming language . 558
14.1.2 Simple Actions . 559
14.1.3 Formula language . 562
14.1.4 LotusScript . 563

14.2 The Domino Object Model. 565
14.2.1 Domino front-end user interface (UI) objects 566
14.2.2 Domino back-end objects . 566
14.2.3 Object hierarchy . 572
14.2.4 Using Domino objects from LotusScript . 573
14.2.5 Understanding front-end classes and back-end classes. 577
14.2.6 Using Domino objects from Java . 581
14.2.7 Using LS to access Java objects and methods. 582
xii Domino Designer 6: A Developer’s Handbook

14.3 Programming with LotusScript . 583
14.3.1 The Event model . 583
14.3.2 Event type and sequence . 585
14.3.3 Action object . 590
14.3.4 Using LotusScript in Web applications . 590
14.3.5 How scripts and formulas are executed . 590

14.4 LotusScript programming tips and considerations 596
14.4.1 General suggestions . 596
14.4.2 Use consistent variable names . 597
14.4.3 Reserved fields . 598
14.4.4 Using script libraries . 600
14.4.5 Using the Template database . 602
14.4.6 Catching errors at compile time . 603
14.4.7 Improving form performance . 603
14.4.8 When to use formulas and LotusScript . 605
14.4.9 Using Evaluate to combine LotusScript and formulas. 607
14.4.10 Making field value changes effective . 609
14.4.11 Using validation formulas and QuerySave/onSubmit 609
14.4.12 Error handling . 612
14.4.13 Enabling the Debugger . 614
14.4.14 Tracing programs without a debugger . 619

14.5 Using JavaScript . 621
14.5.1 Using JavaScript in Domino Design elements 621
14.5.2 Mapping Domino objects to the Document Object Model 624
14.5.3 Examples of adding JavaScript to forms. 631

14.6 LiveConnect - JavaScript access to Domino classes 636
14.6.1 Accessing an applet from JavaScript . 637
14.6.2 Accessing Java/CORBA applets via LiveConnect 637

14.7 The API for Domino and Notes . 639
14.8 XML . 640
14.9 Sametime connectivity . 641

14.9.1 What is Sametime . 641
14.9.2 What can Sametime do . 641
14.9.3 Power of Sametime. 641
14.9.4 Sametime-enabling Domino applications 642

14.10 Integration with Microsoft technologies . 646
14.10.1 What is COM. 647
14.10.2 COM support in Domino . 648
14.10.3 New features in Domino 6. 666

14.11 WebSphere integration . 667
14.11.1 What is WebSphere . 667
14.11.2 Domino and WebSphere defined . 667

14.12 Java. 669
 Contents xiii

14.12.1 About Java Domino classes . 669
14.12.2 Java coding conventions. 669
14.12.3 Agents, applets and applications . 671
14.12.4 Adding CORBA . 672
14.12.5 Benefits of using CORBA . 673
14.12.6 How and when to use CORBA . 673
14.12.7 Compiling and running a Java program 673
14.12.8 Runtime requirements. 674
14.12.9 Remote calls to lotus.domino package . 675
14.12.10 Applet calls to lotus.domino package . 676
14.12.11 Creating a Java agent . 679
14.12.12 Java Database Connectivity (DBC). 683
14.12.13 Servlets . 683
14.12.14 Java Server Page (JSP) . 684
14.12.15 Script libraries . 691

14.13 Summary . 695

Chapter 15. Rich text programming. 697
15.1 What is rich text. 698
15.2 Summary versus non-summary fields . 699
15.3 Rich text and the Notes APIs . 699
15.4 New rich text capabilities in Notes 6 . 700
15.5 Rich text in macro language . 701

15.5.1 Macro language functions to handle rich text 701
15.5.2 Working with rich text in edit mode . 703
15.5.3 Example application: default value for rich text field 703

15.6 Working with rich text in LotusScript and Java 705
15.6.1 The LotusScript rich text classes . 705
15.6.2 Creating and appending to rich text . 706
15.6.3 Navigating and inserting into rich text . 717
15.6.4 Using a NotesRichTextRange to read text or limit a search 728
15.6.5 Working with rich text in edit mode . 732

15.7 Using rich text from other apps via COM/OLE 738

Chapter 16. XML . 743
16.1 What is XML . 744
16.2 XML and Domino. 746
16.3 Basic XML use in Domino Designer . 749

16.3.1 XML for forms, views, or pages. 749
16.4 XML tools (DXL Utilities) . 761

16.4.1 Exporter. 762
16.4.2 Viewer . 762
16.4.3 Transformer. 763
xiv Domino Designer 6: A Developer’s Handbook

16.5 XML and LotusScript . 763
16.5.1 LotusScript agents . 764
16.5.2 New support for DXL. 767

16.6 XML and Java . 779
16.7 Summary . 786

Chapter 17. Web services in Domino . 787
17.1 What is a Web service. 788
17.2 Web services and Domino . 789

Appendix A. Domino and connectivity . 791
CORBA/IIOP . 792
OLE Automation . 792
LSX Toolkit/Lotus Custom Object Toolkit . 792
DECS . 793
Lotus Enterprise Integrator . 793
NotesSQL . 794
ODBC . 794
JDBC. 795

Appendix B. Additional material . 797
Locating the Web material . 797
Using the Web material . 797

System requirements for downloading the Web material 798
How to use the Web material . 798

Related publications . 799
IBM Redbooks . 799

Other resources . 799
Referenced Web sites . 800
How to get IBM Redbooks . 800

IBM Redbooks collections. 801

Index . 803
 Contents xv

xvi Domino Designer 6: A Developer’s Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
Everyplace™
IBM®
IMS™

Informix®
iSeries™
MQSeries®
Perform™
Redbooks(logo)™

SP™
Tivoli®
VisualAge®
WebSphere®

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Approach®
Domino Designer®
Domino.Doc®
Domino™
Freelance Graphics®

iNotes™
Lotus Enterprise Integrator™
Lotus Notes®
Lotus®
Mobile Notes™

Notes®
Sametime®
SmartSuite®
1-2-3®
Word Pro®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xviii Domino Designer 6: A Developer’s Handbook

Preface

In this IBM Redbook, we describe how to develop applications with IBM
LotusDomino Designer 6. With Domino Designer, you are able to create
applications hosted by a Domino server. These applications can be used by
different clients, such as Notes clients, Web browsers or mobile devices.

We introduce, and show in detail, how you can use all the design elements of
Domino Designer, such as forms, pages, views, agents, outlines, resources and
framesets. Those readers who are familiar with developing applications using
Release 5 of Lotus Domino may want to start at Chapter 12, which introduces the
new features in Domino 6.0, and continue from there.

In the chapters toward the end of the book, we discuss different programming
languages, @functions, LotusScript, JavaScript, and Java, that can be used in
Domino. We describe in detail how to manipulate rich text objects by
programming, as well as XML, in Domino.

This redbook was written for technical specialists, developers and programmers,
customers, IBM Business Partners, and the IBM and Lotus community who need
technical understanding of how to develop applications using IBM Lotus Domino
Designer 6.0.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Cambridge Center.

Tommi Tulisalo is a project leader for the International Technical Support
Organization at Cambridge, Massachusetts. He manages projects whose
objective is to produce Redbooks on all areas of Lotus Software products. Before
joining the ITSO in 2001, he was an IT Architect for IBM Global Services in
Finland, designing solutions for customers, often based on Lotus software.

Rune Carlsen is a Senior Consultant for ConCrea as, which is a Norwegian
company owned by IBM. He specializes in Notes/Domino/Web application
development as well as system administration, and provides technical support for
customers and their system environments. As a Certified Lotus Instructor, Rune
also teaches classes, lectures for corporate customers through Lotus Authorized
Education Centers, and often speaks at seminars. He is a Lotus Certified
administrator and developer for Notes/Domino R4, R5 and 6 at the Principal
© Copyright IBM Corp. 2002. All rights reserved. xix

level. He is also the author and the developer of http://www.dominozone.net, a
non-commercial resource site for the Notes/Domino community.

Andre Guirard is a product developer and consultant on the IBM Lotus Software
Enterprise Integration team. He has worked with Notes since version 3.0, and
with other information technologies for some time before that. He has lectured on
Lotes Notes development, and authored several articles on that subject. Andre
can be reached at andre_guirard@us.ibm.com.

Pekka Hartikainen is an IT Specialist with IBM Finland, currently working on a
team that develops Domino- and WebSphere-based applications for IBM
customers. He specializes in the development of Web applications based on
Domino. Since joining IBM Global Services in 1998, he has been involved in
developing several business applications, such as browser-based extranet
solutions.

Grant McCarthy is an Advisory IT Specialist with IBM South Africa. He has
developed a number of Domino applications for IBM, including the IBM SA
On-line Procedures Manual, for which he was the team leader. He was also
selected to participate in the WebAhead Partnership Program, and spent three
months working with the WebAhead team in the USA, whose mission is to
accelerate advanced Internet technology inside IBM. He worked on the Franklin
project, an XML-based content management prototype that is currently being
used by ibm.com.

Gustavo Pecly is an IT Director at Cyberlynxx Ltda., an IBM Premier Business
Partner in Rio de Janeiro, Brazil. He specializes in e-business applications
development and enterprise integration systems. He has worked with IBM/Lotus
technologies for more than five years, developing solutions for several industry
areas that range from simple Domino applications to e-business and intranets
that integrate back-end systems (ERP systems, RDBMS, Transaction systems).
Gustavo is a Certified Lotus Professional at the Principal level in Application
Development, and a Certified Lotus Instructor. His e-mail address is
gpecly@cyberlynxx.com.br.

A number of people provided support and guidance to this project, in particular
Gary Devendorf, Senior Product Manager for Application Development at Lotus
Sofware, and Alan Lepofsky, Offerings Manager for “Grow with Lotus” at Lotus
Software, who contributed numerous samples used throughout the book.

Thanks also to the authors of the IBM Redbook Lotus Domino R5: A Developer’s
Handbook, SG24-5331-01: Fiona Collins, David Morrison, Søren Peter Nielsen,
Sami Serpola, and Reinhard Strobl. We have utilized the material of that redbook
throughout this book.

In addition, we would like to thank to following people:
xx Domino Designer 6: A Developer’s Handbook

Brian Benz, Benz Technologies

Richard Berube, IBM Westford Lab

Roy Bowen, Lotus Software

Kimilee Gile, IBM Westford Lab

Jan Kenney, IBM Westford Lab

Timothy Kounadis, Lotus Software

George LanglaisI, IBM Westford Lab

Steve Nikopoulos, IBM Westford Lab

Jim Verdibello, IBM Westford Lab

Wai-Ki Yip, IBM Westford Lab

Alison Chandler, ITSO Poughkeepsie

William Tworek, ITSO, Cambridge

ITSO Poughkeepsie Editing Team

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!
 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. TQH Mail Station P099
2455 Post Road
Poughkeepsie, NY 12601-5400
xxii Domino Designer 6: A Developer’s Handbook

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. What is Lotus Notes/Domino

The Domino Server family is an integrated messaging and Web application
software platform for companies that need to improve customer responsiveness
and streamline their business processes.

Domino 6, the only solution built on an open, unified architecture, is trusted by
the world’s leading companies to deliver secure communication, collaboration,
and business applications.

In this chapter, we describe the Domino 6 Server Family, the services that
Domino 6 offers, and the clients for Domino 6.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 Domino 6 Server
The Domino 6 Server is offered in different packages in order to allow customers
to pick the functionality that meets their current requirements, and extend that
functionality as their requirements change. In the following sections, we briefly
describe the three Domino 6 Servers.

1.1.1 Domino Messaging Server
Domino Messaging Server is used for messaging, and for calendar & scheduling.
It has prebuilt e-mail and collaborative applications including discussions,
teamrooms, and personal journals. Domino Messaging combines support for the
latest Internet mail standards with the advanced messaging capabilities and
enterprise-scale reliability and performance of Lotus Domino.

Note: Domino Messaging Server is used for messaging only. Customers who
want to deploy their own applications on the Domino server should consider
Domino Enterprise Server or Domino Utility Server.

1.1.2 Domino Enterprise Server
Domino Enterprise Server supports the same e-mail and collaborative
applications as Messaging Server, plus the custom applications created by
customers or business partners. It also includes clustering capabilities for
high-availability implementations.

This is the Domino server to use if your company uses Domino for messaging,
and you want to deploy custom applications.

1.1.3 Domino Utility Server
Domino Utility Server is the new member of the Domino Server family. It does not
entitle the user of e-mail (specifically, individual user mailboxes), but does include
the custom application entitlement. It includes the clustering capabilities for
high-availability implementations. Utility Server imposes no CAL requirements; in
other words, any user of any software can access the server.

This is the Domino server to use if your company does not use Domino for
messaging, but you want to deploy custom applications.

1.1.4 Services offered by Domino Servers
Lotus Domino Servers offer a wide range of services. In this section, we briefly
describe the most important ones.
2 Domino Designer 6: A Developer’s Handbook

Object Store
Documents in a Domino database can contain any number of objects and data
types, including text, rich text, numerical data, structured data, images, graphics,
sound, video, file attachments, embedded objects, and Java™ and ActiveX
applets. A built-in Full text search engine makes it easy to index and search
documents. The object store also lets your Domino applications dynamically
present information based on variables such as user identity, user preferences,
user input, and time.

Directory
A single directory manages all resource directory information for server and
network configuration, application management, and security. Domino includes
user account synchronization between Windows NT/Windows 2000 and Domino,
and is Light Weight Directory Access Protocol (LDAP)-compliant. The directory is
the foundation for easily managing and securing your Internet and intranet
applications.

Security
The Domino security model provides user authentication, digital signatures,
flexible access control, and encryption. Domino security enables you to extend
your intranet applications to customers and business partners. Refer to
Chapter 13, “Securing your Domino application” on page 499 for more
information.

Replication
Bi-directional replication automatically distributes and synchronizes information
and applications across geographically dispersed sites. Replication makes your
business applications available to users around your company or around the
world, regardless of time or location.

Messaging
An advanced client/server messaging system with built-in calendaring and
scheduling enables individuals and groups to send and share information easily.
Message transfer agents (MTAs) seamlessly extend the system to Simple Mail
Transfer Protocol (SMTP)/Multipurpose Internet Mail Extension (MIME), x.400,
and cc:Mail™ messaging environments. The Domino messaging service
provides a single server supporting a variety of mail clients: Post Office Protocol
V3 (POP3), Internet Message Access Protocol V4 (IMAP4), Message Application
Programming Interface (MAPI), and Lotus Notes clients.
 Chapter 1. What is Lotus Notes/Domino 3

Web server
Lotus Domino provides an integrated Web application server that can both host
Web sites that a Web browser, Notes clients, and mobile clients can access, and
serve pages that are stored in the file system or in a Domino database.

When a Web browser requests a page in a Domino database, Domino translates
the document into HTML. When a Web browser requests a page in an HTML file,
Domino reads the file directly from the file system. Then the Web server uses the
HTTP protocol to transfer the information to the Web browser.

Workflow
A workflow engine distributes, routes, and tracks documents according to a
process defined in your applications. Workflow enables you to coordinate and
streamline critical business activities across an organization, and with customers,
partners, and suppliers.

Agents
Agents enable you to automate frequently performed processes, eliminating
tedious administration tasks and speeding your business applications. Agents
can be triggered by time or events in a business application. Agents can be run
on Domino servers or Lotus Notes clients.

Development Environment
Domino Designer is general-purpose client software featuring an integrated
development environment (IDE) that provides easy access to all features of the
Domino server. In this redbook, we focus on the features and functions of
Domino Designer, as well as the Domino Object Model.

Domino Object Model
Domino offers a unified model for accessing its objects through back-end
classes, whether you use LotusScript® or Java. This allows you to switch
programming languages without having to learn new ways to program for
Domino. Refer to 14.2, “The Domino Object Model” on page 565, for more
information on the Domino Object Model.

Live integration with enterprise data
DECS, or Domino Enterprise Connection Services, is part of the Domino Server.
It is a Lotus-developed technology, first shipped with NotesPump™ 2.5, that
supplies an easy-to-use, forms-based interface to achieve deep, integrated
connectivity to external data from Domino applications. This allows developers to
map fields in forms directly to fields in relational database tables, without storing
any data within the Domino database.
4 Domino Designer 6: A Developer’s Handbook

Scalability and reliability
Domino Enterprise Server enables you to cluster up to six Domino servers to
provide both scalability and failover protection, in order to maximize the
availability of your groupware and messaging applications. Real-time replication
technology keeps the clustered servers synchronized.

Note: A Domino server is not the same as a file server. A file server provides
access to shared resources such as printers and applications, and also manages
network activity. Domino is an application-level server process that provides
services necessary for the effective management of communications and
applications.

1.2 Clients for Domino 6
As with the previous release of Lotus Domino, Domino 6 continues to focus on its
“ease of use” approach. Therefore it has numerous clients available to use, each
one designed to meet specific needs:

� Lotus Notes 6 client

� Domino Designer 6: the developer’s client

� Domino Administrator 6: the system administrator’s client

� Mobile clients (PDAs, Internet-enabled cellular phones)

� iNotes Web Access

� iNotes for Microsoft Outlook

� Other POP/IMAP clients

Most of the functionality in Lotus Domino can also be accessed from Web
browsers. The Lotus Domino server includes a Web administration client. In the
following section we give a brief overview of the clients.

1.2.1 Lotus Notes 6
Lotus Notes is the leading integrated e-mail and collaborative software for the
Internet. Notes 6 offers an even more open, Web-like, customizable environment
than was available in Notes R5. You can use Notes to send and receive Internet
mail, schedule appointments, browse the Web, contribute to Internet
newsgroups, and take advantage of the Welcome page for tracking all your
important daily information. You can also use Notes 6 to create databases and
browse existing Notes databases, as well to access Notes applications.
 Chapter 1. What is Lotus Notes/Domino 5

Following are some of the highlights of features that contribute to improving
Notes' ease of use:

Welcome Page
Notes R5 introduced the Welcome Page, which provides instant, customizable
access to the things that are most important to you—mail, calendar, to do list,
Web pages, whatever you want. For Notes 6, the default Welcome Page has
been redesigned to increase ease of use and make more of the features
accessible to you. New features include:

� Enhanced Welcome Page options and a new wizard that make it even easier
to customize and personalize your Welcome Page

� A Tip of the Day that shows handy information about using the Notes client

� Increased content types, such as Notes database views and access to
directories on the file system

� On framed Welcome Pages, a “switcher” for dynamic switching of frame
content (for example, switching from your Inbox to your calendar within the
same frame)

� Welcome Page action buttons, for example, to create a new mail memo or
calendar entry

� A Preview Pane, similar to regular Notes databases

� The Launch Pad, for quick access to applications, everyday tasks, Notes
links, and Web links

� Quick Notes, on the right-hand side of the screen, which allow you to create
mail, contacts, journal entries, and reminders without having to open the
respective databases

Bookmarks
Bookmarks let you create links that point to Notes elements (for example: views,
databases, and documents) or to Internet sites (for example: Web pages,
newsgroups, and ftp sites). To create a bookmark, all you need to do is to drag a
document link or window tab to the Bookmark bar. Bookmarks in Notes 6 now
also fully support drag-and-drop, which means that you can bookmark items from
the file system, including Microsoft Word documents and presentation files, as
well as system folders.

Other Notes 6 enhancements include a Startup folder and a History folder.

The Startup folder allows you to bookmark databases, Web pages, even other
programs that you would want to launch when you start your Notes client.
6 Domino Designer 6: A Developer’s Handbook

The History folder shows you all the documents, views, databases, Web pages or
anything else that you have opened in your client; refer to Figure 1-1 on page 7.

Figure 1-1 The History folder

There are many other enhancements to bookmarks in Notes 6, and more
information can be found in the Lotus Notes 6 Help database.

Mail, calendar, and scheduling
The Notes Calendar is a view in your mail database that you can use to manage
your time. You can keep track of meetings, appointments, anniversaries,
reminders, and events. With Calendar, you can also check other peoples’
schedules, invite them to a meeting, track their responses, and even reserve a
meeting venue. You also have the option of allowing someone else to manage
your calendar (for example, a secretary).

One of the new features in Mail is the unread mail count, which is displayed next
to each of your folders. It is now also much easier to customize your Inbox. For
example, you can now reorder and sort the columns, as well as move the frame’s
and previewpane’s borders. This feature has been applied to all views, not just to
the Inbox.
 Chapter 1. What is Lotus Notes/Domino 7

Another useful feature is the Auto Inbox Refresh, which checks for new e-mail
and automatically refreshes the Inbox. For details about all the new features in
Mail, consult the Notes 6 online help.

Calendar views are now presented in a tabbed format to make it easier to switch
between daily, weekly and monthly calendars. The calendar entry form has been
redesigned to include more tools on one form. All entries in the calendar are now
color-coded, so that it must simpler to distinguish between a meeting, an
appointment and a reminder. Here are examples of other features included in
Notes 6:

� iCalendar (Internet-standard calendaring and scheduling) and vCard
(electronic business card) support

� Several new day, week, and month views

� Many new printing options, including the ability to print to a Notes document

� New formatting options for views: Summarize (for all views) and Show Time
Slots (for week and month views)

� Clickable month and year in the date chooser, so you can quickly change
either the month, the year, or both

� A scroll bar at the bottom of the screen to quickly move to other dates in the
view you're in

Document locking
Notes 6 includes a powerful new collaboration tool; you now have the ability to
lock and unlock documents. When this feature is enabled on a database, users
with at least Author access are able to lock documents on any replica, preventing
others with the same access from modifying the document, even if they are
working on a different replica. Even managers of a database cannot edit a locked
document (although they are able to unlock documents). Database designers
can enable this feature in the Database properties box.

1.2.2 Domino Designer 6
Domino Designer 6 is used to create Domino applications. We focus on Domino
Designer 6 in this redbook; Chapter 2 is dedicated to an overview of Domino
Designer 6, and in other chapters we examine the various design elements and
describe in detail how to program with Domino Designer.

1.2.3 Domino Administrator 6
The Domino Administrator is a powerful tool that allows you to perform all your
administrator tasks from one easy-to-use interface. Domino Administrator’s
8 Domino Designer 6: A Developer’s Handbook

integrated interface allows you to manage users, files, and servers. This is all
possible without the need to switch tools. The Domino Administrator is
task-based. It has different tabs representing the logical grouping of administrator
tasks. Domino 6 includes a number of administration features that give you
powerful, centralized control over Domino, and reduces your administrative tasks.

Some of these powerful features include:

� Policy-based management

� Automatic client upgrades with Smart Upgrade

� Roaming user support

� Delegated server administration

� ASP administration

� Deployment of corporate Welcome pages

� Client version reporting

� Console innovations and improvements

� Statistics monitoring and analysis

For more details about the features found in Domino Administrator 6, see the
online help.

Domino Administrator 6 is not a standalone client, but can be optionally installed
when installing Notes 6 or Domino Server 6. As a developer, you will need
Domino Administrator for certain tasks, such as signing a database. Using the
Java-based Web Administrator client is an alternative to Domino Administrator
client. The Web Administrator client is new to Domino 6.

1.2.4 Mobile clients
Lotus Notes is the leader in mobility solutions. Lotus Mobile Notes is currently
part of another Lotus Offering called Domino Everyplace. Mobile Notes, together
with Domino Everyplace, offers you access to your e-mail, calendars, directories
and Domino-based applications from wireless devices such as PDAs and
Internet-enabled phones.

Mobile Notes offers a familiar menu structure, along with unified access to the
Notes inbox from multiple clients. It comes with a menu that you can personalize
and customize, along with convenient Notes features, views, and reply options
that allow you to work productively while on the go. A feature designed for the
mobile user to view full or brief memos makes it more convenient and easier to
view only the data that's needed. For more detailed information about using
 Chapter 1. What is Lotus Notes/Domino 9

Domino with mobile clients, see the IBM Redbook Lotus Mobile and Wireless
Solutions, SG24-6525.

1.2.5 iNotes
iNotes delivers powerful Domino messaging, collaboration, and e-business
capabilities to Web browser users. Plus, iNotes extends reliable, scalable, secure
Domino messaging services to standards-based client and Microsoft Outlook
users. iNotes provides centralized management and deployment—and
unmatched offline support. iNotes includes:

� iNotes Web Access

� iNotes Access for Microsoft Outlook

iNotes Web Access
iNotes Web Access provides users with browser-based access to Notes Mail,
and to Notes Calendar and Scheduling features. iNotes Web Access users can
send and receive mail, view their calendars, invite people to meetings, create to
do lists, keep a notebook, and work offline. However, users cannot access
Domino databases other than their mail file.

After being set up for iNotes Web Access, a user can use both the standard
Notes Client and a Web browser to access their mail files. Because both the
Notes Client and iNotes Web Access operate on the same underlying user mail
file, read and unread marks remain up to date, regardless of which Client the
user uses to read the mail. Users can also synchronize information in their
Personal Address Book with information in their contact list in iNotes Web
Access.

Other features include:

� Drag-and-drop to folders
� Calendar and Scheduling improvements
� Lock down welcome page
� Rich text enhancements
� New UI refresh

iNotes Access for Microsoft Outlook
This product simply allows you to connect to your Notes mail file through the
Microsoft Outlook client. The Microsoft Outlook user experience is unchanged
with iNotes Access for Outlook; users simply work with their mail, calendar, and
task data on Domino instead of Microsoft Exchange.

Familiar Microsoft Outlook features are supported, including rich text, folders,
and integration with Microsoft Office applications. You can now take advantage of
10 Domino Designer 6: A Developer’s Handbook

the reliable and scalable Domino Messaging environment and all the valuable
features it has to offer.

Other POP3/IMAP clients
iNotes 6 caters for most, if not all, Internet messaging standards. This means that
you can access your e-mail using a third-party standards-based client.
 Chapter 1. What is Lotus Notes/Domino 11

12 Domino Designer 6: A Developer’s Handbook

Chapter 2. Lotus Domino Designer

The Domino server and Domino Designer provide a world-class development
platform for applications, whether the applications will be accessed by Notes
clients, Web browsers or mobile devices. In this chapter, we take a closer look at
Domino Designer.

2

© Copyright IBM Corp. 2002. All rights reserved. 13

2.1 Overview
Domino enables you to build applications which facilitate the flow of information
between your organization’s enterprise systems and front-end business
processes.

The Domino development environment offers you application services such as
workflow, directory, messaging, and security which can be used to create high
value business solutions.

The Domino Designer is an open application development environment that is
intuitive and offers a high degree of developer productivity.

In release 6, Notes and Web development experiences have been integrated,
bringing native Web technologies to the Notes environment and extending native
Domino Technologies to the Web environment. With Domino Designer, you write
your application once to run in both a Web browser and the Notes client. In
addition, you can write applications in JavaScript which will support both the
Notes client and the Web browser.

Domino Designer gives you the ability to build international applications with
Domino Global WorkBench™ which contains a comprehensive set of tools to
easily create, synchronize, and manage multilingual Domino applications.

2.2 Working in Domino Designer
This section gives you an overview of the user interface of Domino Designer. As
in Lotus Notes client, the workspace in Domino Designer is made up of several
pages where the Domino databases are displayed as icons. Databases are also
accessible through bookmarks, which could be located inside bookmark folders,
on the bookmark bar, or even inside documents.

One of the features of the Programmer’s Pane is its sensitivity to context. You are
very often just one mouse-click away from the action you want to perform.

2.2.1 Launching Domino Designer
In order to start application development, you need to open a separate, client,
Domino Designer.
14 Domino Designer 6: A Developer’s Handbook

There are three ways to start the Domino Designer:

� From an icon in Notes client

When you start Lotus Notes, your screen may look like the one shown in
Figure 2-1 (unless you have specified Notes to use another Welcome page).

In any case, on the left-hand side of the figure in the bookmarks bar, you can
see a highlighted icon. Click the icon to open the Domino Designer.

Figure 2-1 Launching Domino Designer from Lotus Notes client

� Or, right-click a database icon in the workspace or window tab and select
Database - Open in Designer.

This opens the Domino Designer with the specific database open.

� Or, select the Windows Start button and then select Programs -> Lotus
Application -> Domino Designer (or click the Domino Designer icon on your
Windows desktop).
 Chapter 2. Lotus Domino Designer 15

2.2.2 The Domino Designer client
When the Domino Designer is opened, it will show you a Welcome Page. The
functionality of the Welcome Page in Designer is similar to the page in the Notes
client. The default Welcome Page has links to most obvious tasks you would
perform with Designer, such as creating a new database or opening an existing
one; the page is shown in Figure 2-2.

This page provides you an option to customize the page content. You can change
the content that is shown in the page by selecting one of the values of the Show
me field, which is illustrated in Figure 2-2.

There are four options that you can choose in the Show me field:

� Quick links for common tasks (the default option)

� Domino Objects for LotusScript and OLE

� Domino Objects for DXL Support

� JavaScript Object Model

The first option shows the default page with common tasks, and each other
selection will change the page to show the object model of the language you
selected on the field.

Figure 2-2 Customizing the Welcome Page in Designer
16 Domino Designer 6: A Developer’s Handbook

Figure 2-3 shows the Welcome Page with a Domino Object Model. You can
easily see the different Domino classes and relation between them. What really
makes the page so helpful is that you can click any of the classes displayed and
open the corresponding help document from the Lotus Domino Designer 6 Help
database.

Figure 2-3 Domino Object Model in Domino Designer

2.2.3 The Design pane
The Design pane gives you easy access to the design elements of the databases
you have worked on.

Clicking the Recent Databases tab in the upper left corner of the Designer
bookmarks bar brings the most recently used databases folder in to the Design
pane.

You can also create a new folder to hold the databases, you want. If you have an
application that consists of more than one database, you can keep all of those
databases easily accessible from one central place by adding them to a Design
pane folder.
 Chapter 2. Lotus Domino Designer 17

Within each database, a Design list shows all the design elements and resource
types that a database can contain. A plus sign (+) to the left of a design element
type (for example, Forms) indicates that it contains design elements.

The Design list has the following functionality:

� Clicking the plus sign displays a list of the existing elements in the Design list.
Five first elements are listed.

� If there are more than five elements, small arrows appear and you can click
those arrows to scroll the elements list.

� Clicking an element type, such as Forms, will load the full list of elements to
the Work pane, which is on the right-hand side of the window.

� Clicking a single element either in the Design list or in the Work pane will
open that element in the Work pane.

Figure 2-4 shows some of the elements.

Figure 2-4 Domino Designer pane overview
18 Domino Designer 6: A Developer’s Handbook

Following are some of the enhancements made to the Design pane in Domino
Designer 6:

� The elements list of the database you are working with has a lighter
background than other databases, which makes it easy to see where you are.

� The Design list is reorganized. Some of the design elements now are grouped
in Shared Code and Shared Resource.

� There are new Object Containers, such as Files, Style Sheets, and Data
Connections.

� There are new Library Types, such as JavaScript Libraries and Java Libraries.

We cover all these new features in Chapter 12, “New features in Domino 6” on
page 347.

From here, you can easily go to any of the design elements of an already listed
database in the area called the Work pane by simply clicking it.

Clicking the push-pin in the upper right corner of the Databases list fixes the list
to the screen and stops it from automatically hiding. Clicking the push-pin a
second time will cause the site database list to disappear when you click the
programmer's pane.

2.2.4 The tabbed windows
The opened windows in Domino Designer are organized in window tabs that
track where you’ve been.

Figure 2-5 Window tabs in Domino Designer

It’s easy to see what you previously opened, and to return to it quickly and easily
by clicking that tab. Also, because the tabs have text titles, you can easily close
the windows that you don’t want open without having them as the active window
on the desktop. Just click the small x to the right of the tab to close that window.

In Designer 6, you can reorder windows by drag and drop. You can also mouse
over a tab, which then displays text with the name of the server, location, and
name of the database, as well as the type and name of the design element.

Note: As soon as you open a Domino database, this database in Designer it is
added to the Recent databases list.
 Chapter 2. Lotus Domino Designer 19

2.2.5 The Bookmark folders
The Bookmark folders feature lets you create folders and organize projects into
them, so you can quickly access databases. Figure 2-6 shows how to create a
Bookmark folder. The folders are shown as icons in the Bookmarks bar.

Figure 2-6 Create Folder dialog box

Tips:

� Using the window tabs is an easy way to cut and paste design elements or
parts of them between applications. You can copy some content from a
window, click to change to another window, and paste the content.

� You can also use the keyboard to switch between windows.

Using Ctrl+Tab allows you to move from window to window. To go to a
specific window, press Alt+W. Domino Designer then displays a number on
each window tab. Press the number displayed for the tab you want to
select. To select a bookmark icon, press Alt+B and select one of the
displayed numbers.
20 Domino Designer 6: A Developer’s Handbook

You can also drag and drop database bookmarks into folders.

2.2.6 The Design elements folders
The Design elements folder feature lets you group and organize database design
elements. In this way, for example, you can group elements the developers are
working on into several folders, one for each developer when a database is being
developed by a team.

To create a new Design element folder:

1. Click any folder on the Bookmark bar to open it and select Create -> Folder
(or, in the Design pane, click the folder icon. If the Design pane is not open,
right-click the Recent databases or any other folder on the Bookmark bar
and select New Folder).

2. In the Folder name text box, type a folder name.

3. In the Select a location for the new folder list box, select the database in which
you want to create the folder and click OK.

Designer places the folder at the end of the database design element list. You
can now add with design elements to this folder.

To add a bookmark of a design element to a database folder:

1. Click a design element icon to expand the design element list.

2. From the expanded design element list, drag the design element to a
database folder, or drag the design element Window tab to a database folder.

Figure 2-7 Creating a folder and a folder is displayed in the Design pane
 Chapter 2. Lotus Domino Designer 21

2.2.7 The Properties dialog
The Properties dialog, also called InfoBox, is your most important tool for
controlling the behavior of design elements.

Every design element has at least two dialogs that display and set its properties.

1. Properties for the Design Document.

This displays properties that are common to all design elements, whether
they are views, forms, pages, or something else. An example of a property
would be hiding a design element from a Web browser.

2. Each design element also has a dialog giving properties specific to the type of
design element (Form properties if the design element is a form, etcetera).
Some design elements have additional properties dialogs for objects
contained within them, such as Field properties for a field on a form.

To open a properties dialog at any time, press Alt+Enter. This will open a dialog
appropriate to the context (for example, if a view column is selected, you’ll see
the view column properties).

The dialog contains a drop-down list of all the properties dialogs available at that
point (for example, if view Column properties are displayed, you can pull down to
select View or Database properties instead).

While the properties box is selected as the active window, pressing F1 or clicking
on the question mark icon will open a window with help information related to that
element.

Design Document Properties dialog
The Design Document properties are only available from the work pane when a
list of design elements is displayed there, as shown in Figure 2-8 on page 23.

Like the document properties dialog in the Notes client, the properties of the
highlighted design element are displayed (in this case, for a form). The dialog has
four tabs, as shown in the figure.
22 Domino Designer 6: A Developer’s Handbook

Figure 2-8 Design Document properties

Info tab
The Info tab, shown in Figure 2-9, displays statistics such as when the design
element was last modified and by whom.

Figure 2-9 Info tab

Fields tab
The Fields tab (triangle icon), shown in Figure 2-10 on page 24, gives the names
and values of the fields that contain the design information. This is internal
information that a beginning developer will have no need to look at. However,
sometimes it is useful to look at the value or the type of a field using this tab.
 Chapter 2. Lotus Domino Designer 23

Figure 2-10 Fields tab

Design tab
The design tab (t-square icon) is the only tab containing properties you can set.
As described in 3.1.1, “Creating a database” on page 48, when inheriting your
design from a template, you can either inherit the entire design, or only individual
design elements.

The design tab, shown in Figure 2-11 on page 25, lets you control the inheritance
of a single design element. You can either enter the template name of a template
from which you want to inherit the design of this element, or check the box that
exempts this element from being updated when the design of the database as a
whole is updated.

This dialog also contains a check box to select that the design element should be
hidden from Web browsers, the Notes client, or mobile devices. This is useful
when creating multiple client applications, which frequently require a different
design element for different clients. For instance, you might have three different
forms with the same name, one for Notes clients only, one for the Web only, and
one for mobile clients only.

The language section at the bottom of this dialog is only visible if you’ve enabled
the Multilingual database property of the database. This lets you select what
language the design element is in. To use this feature, you would have several
design elements with the same alias, one for each language your application
supports.

Notes responds to each user’s language preference in their Notes client by using
the design element that’s in their selected language. If no design element is
available in their language, the default language is used.
24 Domino Designer 6: A Developer’s Handbook

Figure 2-11 Design tab

Document IDs tab
The Document IDs tab (propeller beanie icon), shown in Figure 2-12, gives the
note ID and universal ID of the design element. Like Notes documents, Notes
design elements each have these two unique IDs. Ordinarily, you will not need
this information to design applications in Notes.

Figure 2-12 ID tab

Design element properties
To open the properties dialog (the InfoBox) for the specific type of design
element, you must have that design element open in the work pane, not just
selected in the design element view. For instance, Figure 2-13 on page 26 shows
the View properties dialog for a view whose design is being edited. Use one of
the following options to bring up the properties box.

� Press Alt+Enter.
� Select the appropriate entry from the Design menu (for example, Form

Properties... or Field Properties...).
� Right-click the element in the work pane to click the appropriate properties

menu entry.
� Click the Display InfoBox icon, which is on the left-hand side of the icon bar,

by default.
 Chapter 2. Lotus Domino Designer 25

Each different type of design element, or object contained in a design element,
has a different set of properties associated with it. These are described in the
chapters about the specific design elements.

Figure 2-13 View properties dialog

The pull-down list at the top of the properties dialog is set to View in this picture.
You could instead select Database (which is always available as a choice) or, in
this case, Column, to see the properties of the “Object Title” column which is
highlighted.

The options on the list are dependent on where you are in the Designer. For
example, if you have selected a field on a form, the list contains field, text and
form in addition to database. Double-clicking a column heading or other object
that’s contained in the design element, such as a field on a form, will generally
display properties for that object.

2.2.8 Design element locking
Design element locking lets you avoid the problems you might encounter when
more than one developer works on the same database and with the same design
elements.
26 Domino Designer 6: A Developer’s Handbook

There are two type of locking you can specify:

� Explicit lock
� Temporary lock

Explicit lock
If you work on a team and want to ensure that other designers cannot modify
design elements that you are working with, you can explicitly lock them. When
you have finished working with the design elements and want to release them so
that others can modify them, you can unlock them.

Temporary lock
A design element that is not explicitly locked is always temporarily locked while it
is being edited. If another developer tries to open the same design element, a
message is displayed telling the developer that the element is already open. After
the designer has finished editing the design element, the temporary lock is
released.

2.2.9 The Launch buttons
The Domino Designer 6 interface has a set of Launch buttons in the icon bar, as
shown in Figure 2-14.

Figure 2-14 .The Launch buttons in Domino Designer

Some of these buttons allow you to easily preview the results of your design
changes. The following tools are available for previewing:

� Notes Client -Click the Notes client button, which is the leftmost button.

� Domino Web Browser - Click the Domino Web browser button, which is the
second leftmost button.

� External Web Browser - Click the button showing the symbol of the installed
browser(s).

Note: To be able to set the lock in some database design element, you must
first set Allow Design Locking in the Database Properties. To learn how to do
this, refer to 12.1.9, “Design element locking” on page 358.
 Chapter 2. Lotus Domino Designer 27

The button displayed to the left of the preview tools buttons (refer to Figure 2-14)
will launch the InfoBox for the selected design element.

2.2.10 The Programmer’s Pane
The Programmer’s Pane is made up of two parts:

� Info list
� Script area

In the info list you can select one of two views:

� Objects view
� Reference view

The Objects view
The Objects view gives you immediate access to any design element in your
application and its associated events and attributes.

An icon identifies the language supported by each element event. Domino
Designer provides different programmable events to handle both Lotus Notes
client and Web browsers events. When an event icon is an empty figure, it means
the event doesn’t have any programming code. When an event icon is a full
figure, it means the event does have some programming code; see Figure 2-15
on page 29.

When an event is chosen by the developer, the Programmer’s Pane will reflect
these event, showing the appropriate language and supported clients.

Note: The symbol shown for the external Web browser depends on the
installed browser. For example, if you have two browsers installed, you will see
two buttons for the external browsers.
28 Domino Designer 6: A Developer’s Handbook

Figure 2-15 Objects view

You can easily navigate through the list by clicking the plus (+) sign and minus (-)
sign to expand or collapse the displayed list for a design element.

The small icon in front of the name of the event indicates the programming
language used on that event.

The Reference view
The Reference view, shown in Figure 2-16 on page 30, is similar to the Objects
view. It provides context-sensitive information based on the type of programming
you are using. For example, if you are programming in LotusScript, the
Reference view will show information about Domino objects. You can paste the
function or method into the Script area, in some cases, with the parameters.
 Chapter 2. Lotus Domino Designer 29

Figure 2-16 The Reference view

The Script area
Depending on the selection you make in the Objects view, the appropriate input
window is presented in the Script area, as shown in Figure 2-17 on page 31.
Using the Design Pane property box, you can adjust the settings to your needs
(for example, to change the text formatting for identifiers, keywords, and
comments).

Domino 6 has also a new feature, auto complete, which will look up and paste the
syntax elements directly into the Script area as you start to enter your code. See
12.7, “Auto complete” on page 399, for information on enabling and using this
feature.

Note: Use the Reference view as a quick way to get programming help.
30 Domino Designer 6: A Developer’s Handbook

Figure 2-17 The Script area

2.3 Domino Design elements
As a developer of Domino applications, you will work with the Domino Design
elements to build your application. The following section gives a brief overview of
the design elements. Most of these elements are covered in their own chapters in
this book; the remaining ones are covered in Chapter 12, “New features in
Domino 6” on page 347.

2.3.1 The Domino database
A Domino database is a collection of related information stored in a single file. A
Domino application uses at least one database. It’s a .NSF file (meaning Notes
Storage Facility). However, applications of a more complex nature may use
several databases and may route information between databases on one or
more servers.

A database holds information about its design (see the description of the Domino
design elements below), as well as data. Domino data is organized as
documents. A document is defined as an object containing text, graphics, video,
or audio objects, or any other kind of “rich text” data.

2.3.2 Frameset
Frameset is a collection of frames that you can use to add structure to your Web
site or Notes database. The frameset designer provides visual tools and wizards
to easily create multipaned interfaces for Domino applications.
 Chapter 2. Lotus Domino Designer 31

Framesets provide a standard way to set up a multipane interface for the user.
The Frameset designer enables you to create framesets and then associate
specific pages, views, forms, Java applets, ActiveX components, or any URL with
each frame.

2.3.3 Pages
A page is a design element that displays information to users. It is similar to a
form except that it does not contain fields or subforms. Using the Page designer,
you can create or import HTML Web pages. Page designer is a WYSIWYG
HTML authoring tool that provides support for a broad range of browser
technologies including HTML 4, image file formats, Java applets, ActiveX
components, and multimedia objects. You can create or edit HTML in the Page
designer by using the WYSIWYG editor, by writing HTML source code, or by
mixing both in a single page.

The Page designer provides you with a much improved level of control over the
layout of your Web pages. You no longer have to work directly in HTML to create
sophisticated page design and layout (although working directly in HTML is still
an option).

2.3.4 Forms
A form is a framework for entering and viewing information in a database. A
Notes database contains documents created from one or more forms. A form can
contain:

� Fields that store data.

� Text that labels fields or gives instructions.

� Subforms that store a collection of form elements that you want to use on
more than one form.

� Layout regions that combine graphics and fields in a way that affords greater
design flexibility.

� Graphics that make forms easier to understand.

� Tables that summarize or organize information.

� Objects (OLE, Subscriptions, Notes/FX™ fields), file attachments, URLs, and
links that extend the reach of Notes documents. For more information on
these features, refer to the Domino Designer 6 Help database.

� Actions and buttons that perform functions automatically.

� Background color and graphics that enhance the look of a document.

� Embbeded Elements to include other design elements in a form.
32 Domino Designer 6: A Developer’s Handbook

Fields
Fields are the individual elements on a form that store data. Fields determine
what data a single document can contain when the document is created with that
form. Each field in a document stores a particular kind of data, such as text,
numbers, dates, or user names. Often users can enter and edit field values, but
sometimes data is filled in or changed automatically.

The contents of a field can be displayed in documents and views, or can be
retrieved for use in formulas. A field can be defined for use on a single form, or
can be defined to be shared among multiple forms in a database.

2.3.5 Views
A view is a list of documents in a database. Depending on the selection criteria,
you can display all documents of a database, or a subset. The documents may
be grouped or sorted based on their contents. Usually, the most important
information contained in a document is shown in a view, too.

2.3.6 Folders
Folders are structurally similar to a view. They list documents, but folders do not
have a selection criteria; rather, the user decides on which documents are stored
in folders. Folders can be private or shared.

2.3.7 Shared code
In the following sections we introduce the Domino code and design elements that
can be shared among databases.

Agents
Agents allow you to automate many tasks within Domino. They are standalone
programs that perform a specific task in a database for the user, for example,
filing documents, changing field values, sending mail messages, deleting
documents, or performing more powerful actions, such as interacting with
external applications.

Agents can also be set to run unattended on the server, either on a schedule or
when certain events occur.

Outlines
Outlines, like image maps and navigators, provide a way for users to navigate an
application. Unlike image maps or navigators, outlines let you maintain a
navigational structure in only one place. As your site or application changes, you
 Chapter 2. Lotus Domino Designer 33

make only one change in the source outline. Each navigational structure that
uses that outline source is dynamically updated.

You can create an outline that lets users navigate to the views and folders in your
database, perform actions, or link to other elements or URLs outside of your
application. You can create an outline that navigates through your entire
application or site, or through part of it.

Once you create the source outline, you embed it on a page or form to create an
outline control. This displays it to users as a site map or navigational structure.
Users can click the outline entries to take them where you want them to go.

Subforms
A subform is a horizontal slice of a form that you can use in more than one form.
For example, you might create a corporate letterhead in a subform, and then use
the subform on a variety of business forms. Subforms can contain the same
elements as a regular form. Subforms can be loaded on a form based on a
formula.

Shared fields
Shared fields behave like fields, but may be used in different forms. If you change
the properties of a shared field, the changes are promoted to all occurrences of
this field.

Actions
Action buttons provide one-click shortcuts for routine tasks, and substitutes for
menu choices. For example, they might allow users to compose, print, delete, or
categorize documents, or to give Web users who don’t have access to the Notes
menus a way to click to edit, save, or close documents.

Actions can be shared and used on views, subforms and forms.

Script libraries
A script library is a central place for storing code to be shared. See 2.4.4,
“LotusScript, JavaScript and Java libraries” on page 37, “New library type” on
page 350 and 12.3.2, “Shared Code” on page 367, for more detailed information
about script libraries and what’s new about them in Domino 6.

2.3.8 Shared resources
Shared resources contain design elements that can be shared among databases.
34 Domino Designer 6: A Developer’s Handbook

Images
You can import any image file to your databases, and then use them throughout
your applications.

Files
You can import any file to your databases, and then use them throughout the
applications. An example of a file to be imported could be an HTML file.

Applets
Java applets are mostly used for providing the user an advanced user interface.
They are often used by Web browsers, but you can use applets for the Notes
client, including the applet in a form, document or page. Use your favorite Java
programming environment to create the applet, and you can then make the
applet available for your applications by importing it as a shared resource

Data connections
The data connection resource is a design element where you can define a
connection from a Domino database to a relational database.

Style sheets
Style sheets give you the ability to control many aspects of your interface layout,
including headers, links, text, fonts, styles, color, and margins. Create the style
sheet with your favorite editor, import it as a shared resource in Domino
Designer, and it will then be available for use throughout the databases.

2.3.9 Other

Design Synopsis
Design Synopsis is a tool to generate a detailed report on a specific database. It
covers every component of the application. It can be used, for example, for a
archive proposal (to track database design versions, and to find specific
information inside some design element).

You can set which information you want in the report and what kind of output you
want, as well. This output is customizable and can be displayed in a single
document or in a database to be used at a later time.

Navigators
Navigators are graphics where you can include programmed areas, or hotspots,
that are used for navigation. Hotspots usually direct the user to another part of
the database or Web site.
 Chapter 2. Lotus Domino Designer 35

Icon
You can create an icon for your database to visually represent the purpose of the
database. This icon is shown, together with the bookmark, on the Bookmarks
bar, workspace and—when you have the database open—on a Window tab. You
can create the icon in your favorite graphics editor and paste it into the Designer,
or create the icon in the Designer. The size of the icon is 32*32 pixels.

About This Database and Using This Database documents
These two special documents are meant to be used for providing information for
the user about the database.

The About This Database document is used to describe the purpose of a
database, as well as the target audience of the database. You can specify the
About document to open automatically when a user opens the database.

The Using This Database document is used to give an overview of the database,
as well as instructions on how to use the database. It is also useful for providing
instructions and descriptions about forms and views in the database.

To display these documents, choose Help - About This Database, or Help -
Using This Database.

2.4 New elements of Domino Designer 6
There are many enhancements in Domino Designer 6 which both maintain its
place as an integrated, high level, rapid software development platform for the
Notes client and Web browser, and make it an increasingly useful tool for
developing applications that target other clients, such as PDAs and
Internet-enabled phones, as Domino itself has evolved into a universal enterprise
application server.

In this section, we briefly describe some new elements of Domino Designer 6. In
Chapter 12, “New features in Domino 6” on page 347, we provide detailed
explanations of all the new features.

2.4.1 Cascading style sheet (CSS)
Cascading style sheet (CSS) give you the ability to control many aspects of your
interface layout, including headers, links, text, fonts, styles, color, and margins.
You can browse your local file system for a CSS, turn it into a shared resource,
and then insert it into a page, form, or subform.
36 Domino Designer 6: A Developer’s Handbook

2.4.2 Layers
A layer is not a design element you can create on a database level; you create it
inside a page, form of subform. Layers let you position overlapping blocks of
content on a page, form, or subform. Layers give you design flexibility because
you can control the placement, size, and content of information. You can create
and stack multiple layers beneath and above one another. Transparent layers
reveal layers underneath; opaque layers conceal layers underneath.

The content of a layer depends on whether you create a layer on a page or a
form. When you create a layer on a page, a layer can contain the same elements
that a page can contain; for example, you can add text and graphics, and so on.
When you create a layer on a form, a layer can contain the same elements that a
form can contain; for example, you can add text and graphics, as well as
controlled-access sections, fields, and subforms.

2.4.3 Shared code and shared resources
Each database can contain its own library of shared code and shared resources,
and you can access shared elements in other databases. Sharing elements lets
you reference a resource repeatedly throughout an application, while only having
to maintain in one standard place. For example, if you use your company logo in
many places throughout your application and the design of your logo changes,
you need only change it once, in the image resource, and the change will be
implemented everywhere that image is referenced.

With shared code and resources, you could also make a database that is central
storage for certain type of element or elements. Then you can just reference the
elements from other database. An example of such a database could be an
Image Resources Bank database.

2.4.4 LotusScript, JavaScript and Java libraries
A script library is a place for storing code that can be shared in the current
application using LotusScript, JavaScript, and Java—or in other applications
using JavaScript and Java. Using script libraries allows you to maintain code in
one place.

2.4.5 Data connections
Data connection resource (DCR) is new to Domino 6. DCR is a design element
where you can define a connection from Domino database to a relational
database. This functionality is also available via DECS.
 Chapter 2. Lotus Domino Designer 37

2.4.6 DXL utilities
The XML representation of Domino data is known as DXL. DXL describes
Domino-specific data and design elements such as embedded views, forms, and
documents. As XML becomes the standard basis for exchanging information,
DXL provides a basis for importing and exporting XML representations of data to
and from a Domino application.

With DXL utilities, you can view and export your Domino design elements. You
can also transform to another format using the Transformer utility and a XSL style
sheet file. XSL file contains the formatting for the XML data.

2.4.7 JSP custom tag libraries
With JSP technology, developers can create Web pages that have dynamic
content. This is a quick and efficient way to incorporate complex Java
programming into your pages. JSP tag libraries contain JSP tags, which are
similar HTML tags except that, instead of describing how to present the content,
contain a reference to a Java class.

JSP Custom Tag Libraries that ship with Domino lets you access Domino objects
from Web pages. This means that someone without expert Java or Domino
programming could easily add a tag to a Web page which could, for example,
display a Domino view for the end user.

2.5 Industry Standards support
Environments for developing e-business applications must support the “standard”
Web programming and scripting languages including Java, JavaScript, CSS,
Servlets, HTML and XML. Domino Designer provides support of these Web
standards.

Within the Designer Programmer’s Pane, you have new choices of languages for
writing and compiling code. Java is available for creating Domino agents and
Script Libraries, which are server-side applications that are initiated based upon
events or schedules. Designer supports JavaScript in conjunction with a subset
of the Document Object Model, a standard drafted by the World Wide Web
Consortium (W3C).

In addition, you can code in HTML directly in the Page designer and Forms
designer, format the interface with CSS, exchange external data with XML,
provide dynamic information with JSP Tags and run Servlets in a compliance
mode with the J2EE Internet application development standard.
38 Domino Designer 6: A Developer’s Handbook

Domino Designer also supports CORBA/IIOP for creating distributed
applications. With Domino CORBA objects, you can write Java applications and
Java applets that remotely access Domino services and data. Through the
support of industry standards in the Domino Web application server and in
Domino Designer, you are able to lower your cost of ownership and application
maintenance by leveraging your existing developer skills.

2.6 Multi-client applications support
One benefit of Domino Designer is that you are able to develop a single
application that runs in the Notes client, Web browsers, and mobile clients. The
Designer now supports the latest Web standards including HTML 4.01,
JavaScript 1.3, XML, JSP Tags, and Java. In addition, some Domino design
elements are available as Java applets. This provides functionality, previously
available only in Notes clients, to Web browsers. Furthermore, the CORBA/IIOP
distributed object technology is supported in Domino, providing an alternative to
Notes Remote Procedure Call (RPC) for communicating between clients and the
server.

2.7 Multilingual applications support
With Domino Global WorkBench, you can create multilingual Web sites right out
of the box. The strengths of Domino Global WorkBench reside in better enabling
and serving multilingual multinational corporations and Web site developers who
are implementing and rolling out Domino-based multilingual applications for use
on the World Wide Web or on a Notes Network. Domino Global WorkBench turns
Domino servers into an intelligent language server for the Web.

Domino Global WorkBench lets you localize the Web infrastructure, define the
initial sets of languages supported in the Web site, and define the high level of
synchronization between forms and pages across languages. By allowing you to
localize all user-visible elements of an application, including field labels, buttons,
bitmaps, and dialog boxes, as well as actual content, an application can be
optimized for each individual user who can select their language of choice at run
time.

You can create the design of a Web site in more than one language with Domino
Global WorkBench by resourcing/localizing Notes design elements and objects
stored in the Notes object store environment, and the development languages
including HTML, LotusScript, or JavaScript. Domino Global WorkBench
facilitates review and approval of localized documents through workflow process
 Chapter 2. Lotus Domino Designer 39

and ensures accurate linking and synchronizing of pages available in different
languages, enabling content to appear simultaneously to all users worldwide.

2.8 Easy access to enterprise data and applications
Incorporating back-end data into everyday business processes maximizes the
value of Domino applications. Domino applications provide core technologies for
the security and control of business processes, forms routing, and approvals
management. With new enterprise integration technologies, Domino applications
are now able to incorporate traditionally difficult to reach data into those
applications, becoming a key component of managed business processes.

Domino includes the ability to create Web applications that contain connectors to
relational databases (for example, DB/2 and Oracle), Enterprise Resource
Planning systems (for example, SAP/R3), and transaction systems (for example,
CICS, IBM MQSeries, and IMS). You can accomplish this either
programmatically or with visual tools to native database drivers.

Domino Enterprise Connection Services (DECS) offers developers a visual tool
and high performance server environment used to create Web applications that
provide live, native access to enterprise data and applications. The visual tool
presents an application wizard and online documentation to assist you to define
external data source connections—DB2, Oracle, Sybase, text-based files,
EDA/SQL, SAP/R3 and ODBC—and fields within the Domino application that will
be automatically updated with external connector data.

New Domino classes for enterprise data access will be available in LotusScript
and Java, such as NotesStream/lotus.domino.Stream and
NotesMIMEHeader/lotus.domino.MIMEHeader, respectively LotusScript class
and Java class. These classes enable you to customize applications to
incorporate information from relational databases, transaction systems, and ERP
applications from Domino according to your business needs.

The Domino driver for JDBC, providing standard JDBC access to data in Domino
databases, is also available. Using this driver, you can write Java applets and
applications that use JDBC to access information in Domino databases.

Domino Connectors are modules that provide native connectivity to external
sources such as relational database, ERP, or transaction systems. These
connectors can be accessed through the forms-based development tool in
DECS, or through the new Domino object classes using LotusScript or Java
languages.
40 Domino Designer 6: A Developer’s Handbook

Data Connection Resources (DCR) is a new feature in Designer 6 that allows you
to handle DECS functionality directly in Designer, allowing you to link some
Notes fields with external database fields. DCRs are reusable in an application
and can be shared across applications; see “Data connections” on page 366 for
more information.

Lotus Enterprise Integrator (LEI), which is available separately, extends DECS
functionality beyond real-time data sources to include support for high volume
data transfer and synchronization. LEI provides visual tools to manage
integration between data sources without programming, including the capability
to initiate event-driven or scheduled high volume data transfers between Domino
applications and relational databases and other enterprise applications. LEI also
supports programmatic data transfers via LotusScript and Java Classes.

The LEI release 6 is an important release of LEI and is closely coupled with the
release of Domino 6. There have been ongoing improvements in “classic” LEI,
most of which are available in the last release of LEI 3.2. The exciting part is the
new Virtual Activities, which have long been talked about as virtual views. There
are three of them: Virtual Fields (“classic” RealTime), Virtual Documents, and
Virtual Agents. Back on the “classic” side, there are significant changes in the
user interface, particularly for Replication Activities, that make them easier use.

2.9 Developing for mixed releases of clients
In this section we describe what you need to consider when you are developing
an application which will be used with different releases of Notes clients, for
example with Notes R4.6, Notes R5, and Notes 6.

After upgrading a server to Lotus Domino 6, you can upgrade the databases on
that server to the Domino 6 database format and design (template). These two
steps—upgrading database format and upgrading database design—are
independent of each other. Because database format does not replicate, you can
leave the design of a database based on a Domino 4.6 or Domino 5 template,
and upgrade the database format on that server to the Domino 6 format.

If you decide to upgrade the database design to use Domino 6 templates and
features, be aware that Notes 4.6 and Notes 5 clients cannot use Notes/Domino
6 features. Some Domino 6 features and templates require that a database use
the Domino 6 database format.

Note: When using the Domino Designer 6 client to create applications, you
should know who your clients are. Notes/Domino 6 have several new features
and upgrades, explained in Chapter 12, “New features in Domino 6” on
page 347. If you use these new features, and your client are still on a version
 Chapter 2. Lotus Domino Designer 41

prior to Notes/Domino 6 (for example, R5), then part of your application will not
work properly, because their client does not support your features.

2.9.1 On-Disk Structure
On-Disk Structure (ODS) is the way data is written to disk storage. Every major
release of Notes\Domino has included significant architectural changes to the
database structure. These changes to the ODS provide you with significant
benefits (new features) with very low risk.

Table 2-1 lists the ODS versions related to Domino releases.

Table 2-1 ODS version on different Domino releases

If your clients use releases of Notes before Notes/Domino 6, and the
Notes/Domino 6 application with ODS 43 is located on a Domino 6 server, then
R4/R5 clients should have no problem accessing this database on the Domino 6
Server. If the user replicates this database locally onto their R4/R5 client, the
local replica will automatically be converted to earlier version. The ODS version
does not replicate.

Upgrading the database to the new ODS is simple: you compact the database on
a Domino 6 server or Notes 6 client and the database ODS will be upgraded. In
addition, when you create a new replica, a new database or a new database
copy, the new database will have the new ODS version.

If, however, you don’t want to have the database in Domino 6 ODS version for
some reason, you can revert the database to an earlier ODS version. However,

Attention: We recommend that you develop the applications with a Domino
Designer version that is on the same level as the oldest client version you have
to support. If you are unable to do that, then at a minimum you should test
your application with that client version thoroughly.

Your Domino server should be on the same release version as your Designer.
Some of the functionality of your application might not work as desired if the
server is on a release prior to the Designer.

Domino release level On-Disk Structure level Server output version

Notes R3.x 17 V3

Notes/Domino R4.x 20 V4

Notes/Domino R5.x 41 V5

Notes/Domino 6 43 V6
42 Domino Designer 6: A Developer’s Handbook

by doing this you lose some of the new database features, such as LZ1
compression (the new enhanced compression method) or view logging. Some of
the new features, such as document locking, will still be available. If some of the
new database features are obligatory for you, experiment to see if those are still
available after the ODS has been reverted.

To revert the ODS version back to the R5 format, you have three options:

1. Create a new copy of the database (using the Notes client), and use the
extension .ns5 for the database; see Figure 2-18.

To force the ODS version to remain on R5 level, you can specify .ns5 as the
database extension when you create the database, The extension will only
affect the ODS and make it stay at ODS version 41 (R5); it will not affect the
new Domino 6 features (for example, new elements) you are using. So the
features used will still be unavailable for earlier versions of Notes, but they
are available for Notes 6 clients.

Figure 2-18 New copy with extension .ns5

Note: Changing the file extension on the operating system level does not
convert the ODS of the database.
 Chapter 2. Lotus Domino Designer 43

2. Alternatively, you can use the Administrator 6 client, and compact the
database back to the old ODS version. This is done using a tool found on the
files tab in the administrator client.

Select the Compact tool, as shown in Figure 2-19.

Figure 2-19 Compact tool in Administrator client
44 Domino Designer 6: A Developer’s Handbook

Then select Keep or revert database back to R5 format. This sequence is
shown in Figure 2-20.

Figure 2-20 Reverting the ODS version

3. The third option is to run a server console command:

load compact path/database -r
 Chapter 2. Lotus Domino Designer 45

46 Domino Designer 6: A Developer’s Handbook

Chapter 3. Domino Design elements:
basics

In this chapter, we describe how to create and manage Domino databases. We
include a glossary of Domino Design terms that application developers need to
understand when creating a Domino application.

3

© Copyright IBM Corp. 2002. All rights reserved. 47

3.1 Domino databases
The term “Domino database” refers to both Domino and Web databases. What
makes it a “Web” database is the viewing mechanism—a Web browser instead of
a Notes client, and the fact that it resides on a Domino server running the HTTP
server task.

Traditional Web sites consist of different kinds of pages and associated
compound elements, which are organized in hierarchical directory structures.
When an HTTP request is issued to display a page, a new HTML coded file is
opened.

With Domino, the Web site is structured through Notes databases designed in
the Notes object store format. When an HTTP request is issued to display a
page, a Notes element is opened through a Universal Resource Locator (URL)
command and Domino translates it for viewing as a Web page.

3.1.1 Creating a database
There are several different ways to create a database. You can:

� Use an existing template
� Use an existing database
� Create a new database

Once the database is created, you can modify most of the settings by using the
Database InfoBox. We cover these options in 3.1.2, “Changing the database
properties” on page 59.

Using an existing template
Domino 6 provides a series of written applications that can be used or
customized for your own needs. Although there are many types of popular
application templates, they are mainly designed to reveal the underlying
technology and development capabilities within Domino 6. Their main intent is
not to be “out-of-the-box” applications.

If your application is identical, or similar to, an existing template provided with
Domino, the most convenient way to create a new database is to use that
template as your starting point. Most of the design work has already been done
for you. The design elements of the individual templates can easily be copied
and pasted into your custom applications.
48 Domino Designer 6: A Developer’s Handbook

Following are some of the most useful application templates shipped with
Domino 6:

� Discussion - this is a discussion database for both Notes and Web clients,
where users can create new discussion topics and others can reply to them.
The discussion database template is also often used to create a Classified
Ads database.

� Doc Library - this is a document library for both Notes and Web clients, which
can be used to store all kind documentation, instructions, manuals or
technical details. It is often used to create a database containing Human
Resource information, travel guidelines, or equipment information. The
template also contains Document Review Cycle functionality, which allows
moving the document from user to user for reviews.

� Lotus SmartSuite Library - this is a document library template with Lotus
SmartSuite integration. Users can create documents using one of the
SmartSuite products, like 1-2-3, WordPro, or Freelance Graphics and the files
are saved inside the Domino database.

� Microsoft Office Library - this is a document library template with Microsoft
Office integration. Users can create documents using one of the MS Office
products, like Word or Excel, and the files are saved inside the Domino
database.

� TeamRoom - this is a very useful application for enabling communication and
sharing database among the team. Users can utilize the rich set of
functionality the application has, such as discussion, creating and sharing
documents, creating meeting minutes, assigning action items and team
calendar.

Listing available templates
To see the list of available templates, follow these steps:

1. Choose File -> Database -> New. The list box on the New Database dialog
box lists several templates.

2. Click the Show advanced templates check box. The list box at the bottom of
the list displays additional templates. The templates listed are stored on your
local workstation.

3. Select any template.

4. Click the About button to display the database Help document. It summarizes
what the database can be used for.

Tip: The shortcut is Ctrl+N.
 Chapter 3. Domino Design elements: basics 49

To see additional templates stored on a server, select the server you want to
access from the Template server drop-down list.

Creating the database
Follow these steps to create the database:

1. Decide if the database will reside on your local workstation or on a server.

2. In the Title field, specify a meaningful title.

3. In the File Name field, specify a file name for the database. You can also take
the file name that Domino provides automatically based on the database title.

Figure 3-1 shows an example of a completed New Database dialog box.

Figure 3-1 Creating a new database

4. You can encrypt local databases to protect confidential data. This is useful if
users have laptops that will be taken out of their business locations.

To specify encryption, click Encryption. Specify the appropriate level of
encryption.

Note: The extension for a database file is .NSF (for Notes Storage Facility).
The extension for a database template file is .NTF (for Notes Template
Facility).
50 Domino Designer 6: A Developer’s Handbook

Figure 3-2 shows an example of a new Encryption setting.

Figure 3-2 New database Encryption setting

Only the user shown in the Encryption window has access to the local
database after it is encrypted.

You should set the size limit only if you are developing an application for use
with Lotus Notes and Domino 4.x, or if you will be on a Domino 4.x server.
The maximum size for database in Domino R4 was 4 GB. In Domino 6, the
size of the database is only limited to what your operating system can
support, up to 64 GB.

Note: The size button that was visible in earlier releases of Domino is now
hidden if the file extension is .nsf. If you change the file extension to .nsf4, the
size button will become visible again, as shown in Figure 3-3 on page 52.

Note: Although others can’t access the encrypted database locally, they
can still access the database if it is on a server. This also applies to Web
users.

If you would like to deny access to other users, use the Access Control List.
 Chapter 3. Domino Design elements: basics 51

Figure 3-3 Size limit button visible

Clicking this button allows you to set the size limit of the new database; see
Figure 3-4.

Figure 3-4 Size limit for new databases

If you want to set a size limit to a database in Domino 6, use the Set size
quota feature with Domino Administration Client (see the Lotus Domino
Administrator 6 Help for more information).

5. If you want your new database design to stay synchronized with the design
template, check the option “Inherit future design changes” in the New
Database dialog box.

Note: “Inherit future design changes” is shaded until you select a template
from which your database should inherit design changes.
52 Domino Designer 6: A Developer’s Handbook

6. For advanced options, click Advanced. Figure 3-5 shows the dialog box that
will be displayed.

Figure 3-5 Advanced Database Options dialog box

Let’s take a closer look at each option:

– Don't maintain unread marks

Maintaining unread marks in a database slows performance. For some
databases, such as the Domino Directory or the Domino log file, unread
marks are not useful. However, in many applications, such as discussion
databases and document libraries, the unread marks are essential
functionality to the application. Your decision regarding this property
should be based on what your database is used for.

If you do not need to track read and unread documents, consider disabling
unread marks in the database to improve performance.

– Document Table bitmap optimization

Notes refers to tables of document information to determine which
documents appear in an updated view. Selecting this property associates
tables with the forms used by documents in each table.

During a view update, Notes searches only tables whose views contain
forms used by documents in that view. While there is a slight performance
cost to maintaining this association, this setting significantly speeds
 Chapter 3. Domino Design elements: basics 53

updates of small views in large databases. To enable optimization using
the table-form association, select this property.

When you change this setting, compact the database to enable it. Make
sure your system has sufficient disk space, as this compact makes a
temporary copy of the database. (You can also use the load compact
command with the -F or -f switch to enable or disable bitmap
optimization.)

– Don't overwrite Free space

To prevent unauthorized users from accessing data, Notes overwrites
deleted data in databases, which can reduce database performance. In
some situations, this security feature is not necessary, such as when:

• The database is physically secure (for example, on a
password-protected server in a locked room).

• Space in the database is quickly reallocated (for example, in system
databases such as MAIL.BOX).

• Security is not an issue (for example, in an employee discussion
database).

• The database is encrypted.

– Maintain Last Accessed Property

Domino databases store the date when a document was last modified or
read. By default, the database records only changes to documents—not
reads.

If you select this property, the database records reads of a document, as
well as changes to the document.

Tip: Document Table bitmap optimization will not improve performance unless
the server can tell, based on the view selection formula, which forms are
candidates for inclusion in a view. The view selection formula must begin with
the test of the form name; for example, use this format:

SELECT Form = “Report” & Category = “Done”

Do not use this format:

SELECT Category = “Done” & Form = “Report”

Note: Legal requirements for document retention in your company may be a
consideration in whether you select this property. If you do not overwrite free
space, it may be possible to retrieve deleted information from the database.
54 Domino Designer 6: A Developer’s Handbook

If you set the database to delete documents based on intervals without
activity (such as, 10 days without being read or modified), then you should
select this property—with the understanding that this may negatively
impact database performance.

Otherwise, leave the property deselected for best performance.

– Disable transaction Logging

When disabled, this property turns off logging of all transactions for all
Domino API functions. It also turns off full database integrity and
replacement of Database Fixup on system restart with high speed
transaction roll forward/rollback from transaction logs, along with support
for backup and recovery APIs.

Note: Consult your Domino administrator prior turning on or off the
transaction logging on any databases.

– Allow soft deletions

This property allows deleted documents to remain in the database and not
be permanently removed for a set number of hours. The hours are set by
the database manager in the Advanced tab of the Database Properties
box. After the specified time period, the document is permanently deleted
from the database.

This feature is very useful for administrators to use with databases where
regular users have deletion rights. Often users delete documents by
accident or without enough consideration, and usually notice this within a
couple of hours from the deletion. As an administrator, you can restore
those documents, if they have not been permanently deleted.

If important documents are deleted, but the user does not realize it until
several days after the deletion, you can always restore those documents
from the backups.

– Don't Support specialized response hierarchy

Documents store information about their parent and response documents,
which is used only by the @functions @AllChildren and
@AllDescendants. In databases that do not use these @functions in
views, select this property to improve database performance.

Note: You can still have responses with this option selected, but the
@functions do not work.

– Don't allow headline Monitoring

Users can set up their headlines to search databases automatically for
items of interest. If many users do this, database performance can be
slow. To prevent a database from being monitored, select this property.
 Chapter 3. Domino Design elements: basics 55

– Allow more fields in database

This option allows a database to contain up to 23,000 field names. For a
database without this option selected, all field names when concatenated
cannot exceed 64 kilobytes, which results in a database limit of
approximately 3,000 fields.

– Use LZ1 compression for attachments

This is a new feature in Domino 6. With Domino 6, you can compress
attachments using the Lempel-Zev class 1 (LZ1) adaptive algorithm
instead of the Huffman algorithm, which was the compression method
used in earlier releases of Domino.

Because LZ1 compression can save you a considerable amount of disk
space, it is favored over the Huffman method. Be aware, however, that if
you are working in an environment that uses different versions of client
and server software and you choose this property, the attachments are
automatically recompressed on the server using the Huffman algorithm.
This recompression of attachments can add significant extra time to the
process.

– Limit entries in $UpdatedBy fields

A document stores the name of the user or server that made each change
to it in the $UpdatedBy field. This edit history requires disk space and
slows both view updates and replication.

If you do not need to maintain a complete edit history, then specify the
number of changes that the $UpdatedBy field tracks by using this setting.
Once the $UpdatedBy field reaches this limit, the next edit causes the
oldest entry to be removed from the $UpdatedBy list.

The default value is 0, which means that the number of entries is limited to
500.

Consider limiting the entries in the $UpdatedBy field in databases if there
is no need to record who has edited documents over time. (The reasons
cited in the following item are also valid considerations for limiting the
number entries of this field.)

– Limit entries in $Revisions fields

A document stores the date and time of each change saved to it in the
$Revisions field. Domino servers use this field to resolve replication or
save conflicts. The $Revisions field stores up to 500 entries by default.

If you do not need to track changes this closely, specify the number of
changes that the $Revisions field tracks by using this setting. Once the
$Revisions field reaches this limit, the next edit causes the oldest entry to
be removed from the $Revisions list.
56 Domino Designer 6: A Developer’s Handbook

Consider limiting the entries in $Revisions fields in databases that:

• Contain many documents
• Replicate often or have no replicas
• Contain documents that are rarely edited

– Soft delete expire time in hours

This property allows the database manager to specify the time (in hours)
that documents marked for “soft” deletion are held before they are
permanently removed from the database. The value in this field has no
effect unless you check the Allow soft deletions check box (refer to the
Allow soft deletions bullet on page 55 for more information).

Copying an existing database
First, locate the database you want to copy. Open it in the Notes client or in
Domino Designer, or highlight it in the Workspace window. Then use the menu
File/Database/New Copy to open the copy dialog.

As an alternative, locate it in your bookmarks and right-click to bring up the
bookmark menu, as shown in Figure 3-6 on page 57.

Figure 3-6 Copying an existing database from the bookmark list
 Chapter 3. Domino Design elements: basics 57

Once the Copy Database dialog is open, proceed as follows:

1. Select Local as the server name if you want to store the database on your
local workstation. Select a server name if you want to store the database on a
server.

2. Enter a title for the database.

3. Type a file name with the extension .NSF for the new database.

4. Select Database Design Only if you do not want to copy the documents that
are stored in the database.

5. Deselect Access Control List, because it could prevent you from modifying the
database design in the future.

Figure 3-7 shows an example of the Copy Database dialog box.

Figure 3-7 Copy Database

Tips:

Generally, you will want to customize the design of databases you copy. To do
this, the database design must not be hidden. Check the Design tab of the
database properties to find out whether the design is hidden. If so, try to get
the original template from which the database was created.

The shortcut to open an existing database is: CTRL+O.

Note: Unless you deselect Access Control List, the access that you have
to the copy of the database will be the same as the access you have to the
original database.
58 Domino Designer 6: A Developer’s Handbook

6. To encrypt the database, click Encryption and select the appropriate
encryption level. (This is desirable if the database will be stored locally,
especially if the database contains confidential data, or if your users have
laptops that they use in public environments.)

7. Click OK to start the copy operation.

Creating a new database
If the template or existing databases do not meet your requirements, you can
create a completely new database. This means that you will have to create all the
design elements, such as forms, pages, views, and fields.

However, you can always copy existing elements from other databases and paste
them into the new database by using this method:

1. Choose File -> Database -> New.

2. Type a title in the Title field.

3. From the list of available databases displayed at the bottom of the window,
choose the -Blank- option.

4. Click OK. The new database will be added to your bookmarks.

5. Select the database that you just created, click the right mouse button, and
select Open in Designer.

Domino Designer and your newly created database will be opened, and you will
be ready to start the design of the database.

3.1.2 Changing the database properties
One strength of Domino is the fact that it is sensitive to context. You are often just
one mouse-click away from the properties of the object you are working on:
outlines, fields, embedded elements, Java applets, buttons, forms, attachments,
and databases.

Opening the database InfoBox
To display the database InfoBox:

1. Display the database pop-up menu by clicking the right mouse button.

2. Select Database Properties; see Figure 3-8 on page 60.

Tip: The shortcut is Alt+Enter. You can also click the Properties icon to display
the database properties InfoBox. If the toolbar bar is not visible, select File ->
Preferences -> Toolbar Preferences and go to the Toolbar tab, and then set
the Universal toolbar to: visible.
 Chapter 3. Domino Design elements: basics 59

Figure 3-8 Properties

Specifying the database type, replication, and encryption
The Basics tab contains information about the database, such as its title,
location, database name, the database type, the replication settings, and
replication history; see Figure 3-9.

Figure 3-9 Database properties

1. To set the Database type, you can select one of the following values:

Standard. This type is used most of the time. Unless you have a specific
reason for specifying the database as something else (such as, the database
is a Domino Directory), the database type should be standard.

Library. This type is generally created from the Database library template. It’s
used to record and store information about the databases located on a
Domino server or on a workstation, which provides an easy way for users to
browse the list of databases available to them.
60 Domino Designer 6: A Developer’s Handbook

Personal Journal. This database type is a place for you to store private
documents you don't want to share with others. You can use the personal
journal as a diary, a notebook, or as a holding place to compose documents
before they are ready for distribution.

Domino Directory. This type creates a database based on the Domino
Directory format.

Directory Catalog. This type creates a database based on the Domino
Directory format, but with fewer features than the full Address Book.

Multi DB Search. This type is used to specify a database type of Search
Through Multiple Databases, which uses the SRCHSITE.NTF template. This
type of database is used to configure searches among databases that have
been designated to participate in Multi Database indexing by selecting the
appropriate option in the Design tab of the database InfoBox.

Portfolio. This type allows users to keep a collection of databases that are
used frequently, or that are related.

IMAP Server Proxy. Internet Message Access Protocol (IMAP) is used to
send and receive electronic mail, using the Internet.

News Server Proxy. This type allows users to keep a collection of news
group and conversations about news.

Subscriptions. This type is used to keep track of user subscriptions to
various databases, and is used by the headlines databases.

Mailbox. This type is used for mailing purposes. Note that this is not a user
mail file, with Inbox and Sent folders; instead, it is used by the mail routing
process to hold mail until it can be delivered to a user.

Mail File

2. Click the Archive Settings button to display the Archive settings property
box, as shown in Figure 3-10 on page 62.
 Chapter 3. Domino Design elements: basics 61

Figure 3-10 Archive settings

This option enables you to determine when documents are deleted, and
where archives of those documents are stored. You can set more specific
settings for archiving (such as creating archiving scenarios where documents
are archived based on when they were created, for example).

You can also set up scheduled archiving.

3. Click Encryption to display a window that enables you to specify encryption
for the local version of the database.

4. Web Access: Use JavaScript when generating pages. This option allows
the Domino server to use JavaScript to generate Web pages. For example, by
selecting this option, you can use multiple buttons on the form.

Some of the @Commands require this option to be set in order to work. An
example would be @Command([ViewRefreshFiels]), which causes all the
field formulas to recalculate.

5. Web Access: Require SSL connection. This option forces users to log in to
the database using Secure Sockets Layer (SSL). SSL securely encrypts the
traffic between client and server. Without SSL, the traffic between the Web
browser and the Domino server could possible be cached or compromised.

6. Web Access: Don't allow URL open. As you design an application which
users will access with a browser, you may want to restrict browser users from
using URL commands that would open forms and views in your application.
62 Domino Designer 6: A Developer’s Handbook

For example, you can design your application so that a servlet that uses forms
or views will only use the forms and views using URL commands.

However, if you set this property, it will be impossible for browser users to
manipulate these application components using Domino URL commands.

7. Disable background agents for this database. This property can be used
to disable all scheduled agents in a database for debugging or
troubleshooting issues. (Note: Generally, you do not set this option on a
production database.)

8. Allow use of stored forms in this database. This setting applies only when
using Notes client to view databases. When a form is stored with a document,
all the user interface elements and information about how to use them is
stored with every document that is created with the form. Because of this,
your database could grow substantially.

Previously, this option was required to store information entered into OLE
objects embedded on the forms. However, with Domino 6, the OLE object is
always stored as part of the document, not the form, so the main reason for
using stored forms is gone.

The benefit of storing the form on a document is that you could send or
copy/paste a document to a database, and that database does not have to
contain the forms to show the documents. Also, storing the form with the
document might be useful if you have an application with different versions of
design—and the old documents should use the design and UI that was
current when the document was created.

Note: Keep in mind, however, that allowing stored forms causes a potential
security risk; someone could write malicious code and store it in the
document. When the document is opened, the code could run and do
damage.

9. Display images after loading. Properly setting database properties can
improve the performance of an active database. Setting database
performance properties on many databases—or on one, large, active
database—can also improve server performance. In addition, some of these
property settings also help reduce the size of databases.

10.Allow document locking. When you set this property, users with Author
access or higher can lock documents in that database. Locking a document
prevents editing and replication conflicts by ensuring that the document lock
owner has exclusive access to modify the document; others with the same

Note: Users also can specify “Load images: On request” in the Advanced
section of a Location document, in order to display images only when users
click them. For more information, refer to Lotus Notes 6 Help.
 Chapter 3. Domino Design elements: basics 63

access cannot modify a locked document at the same time—even if they are
working on a different replica on the same LAN. Managers of a database
cannot edit a locked document. However, Managers can unlock documents
that are locked.

11.Allow connections to external databases using DCRs. In order to
establish a connection to an external data source, you must first enable
external connections for the database. Once that database property is set,
you can then use your data connection resource (DCR) in a form to exchange
data with an external database. For more information about DCRs, refer to
Chapter 10, “Domino design elements: shared resources” on page 317.

Displaying general database information
1. Click the Information tab to display general information about the database,

such as its size and the number of documents stored.

Figure 3-11 shows the Information tab of the property box.

Figure 3-11 Database Information

2. Click User Detail to display information related to user activity.

3. This page also tells you the ODS, or On Disk Structure, version. ODS version
tells you the version of the database, ODS version 43 means that the
database is made with Domino 6 or newer.

Note: You may want to disable this property while you are designing an
application, and enable it when you are ready to deploy your application.

You must also disable this option when you import existing records from an
external database into your application.
64 Domino Designer 6: A Developer’s Handbook

Viewing this information about a R5 database would show ODS version 41,
and for a R4 database, the ODS version is 20.

Specifying print options
1. Click the Printer tab to specify options related to printing the database.

2. You may want to add a header or footer to the pages of the Notes documents
you print (this is how you add page numbers to printed documents, for
example).

Header and footer information can apply to all documents in a database, or be
set up for a particular document. The header and footer you create for a
database prints with all documents in the database, unless you set up a
different header and footer for the document.

Use the icons under the Header and Footer options to define the date, time,
tabs and page numbering; see Figure 3-12.

Figure 3-12 Database Printing

Notes: Database header and footer information also appears when you
print a list of documents in a folder or view, a Calendar view, or a list of
calendar entries.

Print options are a personal setting; they apply only to the user who sets
them.

Tip: Use the Print Preview command to see how headers and footers look
before you actually print.
 Chapter 3. Domino Design elements: basics 65

3. You can also select the font, size, and style.

Specifying Database Design properties
1. Click the Design tab to display or specify information concerning the design

of the database.

The example displayed in the Figure 3-13 on page 67 shows that the design
of this database is not hidden. The design of a database can be hidden when
creating the database, or replacing or refreshing the database design from a
template.

2. If you select Inherit design from template, the database automatically inherits
all the changes made to the template if the template this database is based
on is modified in the future.

3. You can enable the Design locking feature in the database. First, you must
specify an Administration (Master lock) server for the database; this is done
using the Advanced tab of the ACL dialog box.

4. If the database you are creating is a template, check the “Database is a
master template” check box and specify a name for the template.

5. If appropriate, select that the new template is listed as an advanced template.
This indicates that the template should only be used by Domino developers or
administrators, and that it is only visible as an available template when the
advanced check box is checked when creating a new database.

6. Deselect “List in Database Catalog and Show” in the Open Database dialog if
the database is located on a server, contains sensitive data, and you do not
want users to be able to see its name.

Note: Printing properties do not take effect if you are printing from the
Web.

Note: The DESIGN task on the server updates databases when their
design templates change. This generally happens nightly; however, the
task can be disabled by an administrator.

You can also refresh a design using File -> Database -> Refresh Design
while in the database.

Note: This is not a security feature, since there are other ways to find
databases on the server. To keep the contents secure, use the database
ACL and encrypt local replicas.
66 Domino Designer 6: A Developer’s Handbook

7. If you want the index to be included in Multi Database Search Database site
queries, then select Include in multi database indexing.

8. Enable Multilingual database if your database will be used by multinational
organizations across time zones, languages, and cultures; see Figure 3-13.

– Select the Default language for this database.
– Select the Default region for this database.
– Select the Default sort order for this database.

Using this option lets you create multiple versions of each design element,
one for each language your application supports. The Notes client will choose
the appropriate element that matches the language the user has set.

Figure 3-13 Database Design

Specifying Launch options
1. Click the Launch tab to define what users will see when they first open the

database. The dialog box displays differently, depending on your choice of
actions in the On Database Open drop-down list; see Figure 3-14 on page 68.
 Chapter 3. Domino Design elements: basics 67

Figure 3-14 Database Launch

2. Select an option from the On Database Open drop-down list; see Figure 3-15.

Figure 3-15 Drop-down list

A wide variety of options is possible, for example:

– If you select Open designated Frameset, then you need to select the
frameset that you want to be opened. All available framesets are listed in
the drop-down box.

– If you select Open designated Navigator options, another drop-down list is
displayed, where you can select the kind of navigator that you want to
open. You can choose folders, standard navigator or page. Choosing
standard navigator or page will display a third drop-down list, where you
can select the actual navigators or pages to be used; see Figure 3-16 on
page 69.
68 Domino Designer 6: A Developer’s Handbook

Figure 3-16 Open designated Navigator

– Select Open designated Navigator in its own window if you want the
navigator to be displayed in a full screen. You would typically choose this
option if the navigator or page consists of a large map or a workflow
sketch.

3. You can specify the properties of the preview pane by clicking Preview Pane
Default.... You will be presented with a number of choices. Click the most
appropriate property for the user; see Figure 3-17.

Figure 3-17 Preview pane properties

Note: This is the default value that is used when the user opens the
database for the first time. Users can override this choice and Notes will
remember their preference when they open the database again.

However, this option does not take effect on the Web, because Web users
do not have the preview pane.
 Chapter 3. Domino Design elements: basics 69

4. Select an option from the On Web Open drop-down list for Web users
opening the database. A wide variety of options are possible.

Specifying Full-Text indexing
1. Click the Full-Text tab to create, update, or delete a full-text index, which

allows for fast retrieval of documents.

2. Select the update frequency as required; see Figure 3-18.

Figure 3-18 Create Full-Text Index

Specifying Advanced options
The Advanced tab allows you to enable or disable advanced database options,
many of which affect the performance of the database. For more detail about
advanced options, refer to the explanations listed under item 6 on page 53.

Note: You generally do want to full-text index your databases, since this
makes it much faster for users to find information by searching for keywords in
the text. Agents that use full-text selection criteria also execute faster if there is
an index.
70 Domino Designer 6: A Developer’s Handbook

3.2 Using Design Synopsis
Design Synopsis gives you a single location where you can browse or search all
of the components and code logic of a database. It provides you with an output of
important information about every component of the application, for
documentation or archival purposes. You may customize the output to your
needs and display it as a single document, or put it into a database to be used at
a later time.

The Design Synopsis dialog box allows you to generate a detailed report on a
particular database. In Domino 6, the user interface of the dialog box has been
enhanced to make it easier to use.

To create a design synopsis:

1. Select the database for which you want a report.

2. Choose File -> Database -> Design Synopsis. (Or you can open Designer
and select the database for which you want a report, and then click Other ->
Design Synopsis).

3. Select the design elements (forms, views, shared fields, agents, and so on)
that you want in your report. For each design element type you choose, select
the individual elements that you want in your report.

The Add button lets you select the elements of a design and add them one at
a time to your report. The Add All button selects all the elements of a
particular design element. The Type drop-down list also includes an -All-
option, which lists all elements in your database.

Restriction: For databases with large amounts of design elements, such as
your mail file, Design Synopsis may fail with an error message.

For these cases, you can try creating a separate synopsis for views and
forms—or use the Format output tab to select a database for the output.
 Chapter 3. Domino Design elements: basics 71

Figure 3-19 Choose Design element

4. Click the Choose DB Info tab to select the database information that you
want in the report; see Figure 3-20.

Figure 3-20 Choose DB Info

The following selections can be made:

– General Information - this provides information such as the database
title, location, and categories.

– Space Usage - this calculates the file size, the number of documents, and
the space used by the database.

– Replication - this provides information about the replication settings for
the database.
72 Domino Designer 6: A Developer’s Handbook

– Access List - this generates a list of users, groups, and servers in the
ACL, and specifies assigned access levels and access roles for each.

5. Click the Define Content tab to select the contents of the report for each
design element. Different elements have different options, and the list of
options is context-sensitive. Also keep in mind that whether or not you can
include or exclude subcomponents or certain types of code depends on the
type of element you are creating the report from.

Figure 3-21 Define Content

6. Click the Output tab to specify the output options. For example, if you want to
write the report to a database, select Direct Output to: Database; see
Figure 3-22.

Figure 3-22 Format Output
 Chapter 3. Domino Design elements: basics 73

7. Click OK to generate the report; see Figure 3-23 on page 74.

Figure 3-23 Database Information

3.3 Summary
This chapter explains some of the basics related to creating Domino databases,
and also provides a glossary of some of the most commonly used design
elements in Domino.

We walked through different database settings available on different tabs on the
InfoBox of databases. We also illustrated how to use Design Synopsis, which
enables you to easily see an overview of the design elements in your database.

Note: For more information about Design Synopsis and its new features in
Domino 6, refer to 12.2, “Design Synopsis” on page 363.
74 Domino Designer 6: A Developer’s Handbook

Chapter 4. Domino Design elements:
forms

In this chapter, we describe Domino forms and explain what they are and how to
design and modify them. We also discuss the basic design elements used when
creating a Domino database.

In addition, we show you how to display different information to the Web and
Notes, as well as to users with mobile clients such as PDAs and Internet-enabled
phones.

4

© Copyright IBM Corp. 2002. All rights reserved. 75

4.1 Forms
This section will guide you through Domino forms; it describes what they are and
explains the different types of forms, and discusses how to create, design, and
modify them. This section also examines the design elements of the form, such
as fields, tables, images, embedded elements, layout regions, and computed
text. We make use of the MyTeamRoom database, which we created from the
TeamRoom template as a basis for demonstrating the Domino 6 elements. You
will find the template for the TeamRoom database on your Domino server.

The form is the skeleton provided to users to enable them to enter data, either by
typing or by simply clicking various buttons or hotspots. There is usually at least
one form in a database, although a typical business application will have many
forms, each targeted to the type of information that the user wants to save in the
database.

The form contains all the design elements; fields to store the user’s information,
static text, buttons, sections, images, and subforms that help the user to enter the
data into the database.

To create a new form, go to Form Designer and click New Form, or choose
Create -> Design -> Form. Alternatively, you can copy and paste a form from the
Design Form pane and then customize the form to your needs.

4.1.1 Specifying form properties
The Form InfoBox contains all of the information related to forms. To look at the
form properties, do the following:

1. Go to the Form Designer.

2. To create a form, click New Form and the new form is displayed; see
Figure 4-1 on page 77.

3. Click the Properties icon.

4. An InfoBox will be displayed which allows you to set the properties of the
form. It consists of seven tabs:

– Form Info
– Defaults
– Launch
– Form Background
– Header
– Printing
– Security
76 Domino Designer 6: A Developer’s Handbook

Figure 4-1 To create a form, click New Form

Using the Form Info tab
The Form Info tab stores general information about the form; see Figure 4-2 on
page 78. In the section following the figure, we explain the details of each
selection you can make.
 Chapter 4. Domino Design elements: forms 77

Figure 4-2 The form properties box showing the Form Info tag

Name
In the Name field, specify a name and an alias for the form.

By default, the form name appears as an item in the Create option on the menu
bar. This is the name that the user sees. Therefore, make it as meaningful as
possible.

To specify an alias, enter the vertical bar (|) and the alias after the form name in
the Name field. It is recommended that you create an alias for each form. This is
the name you will use in your code.

Specifying an alias enables you to leave your code unmodified if, for example, the
user requests to have the name of the form changed. It is the alias, not the actual
name, that is saved in the document created with this form.
78 Domino Designer 6: A Developer’s Handbook

Try to keep the first character unique, because Domino will use the first unique
character as a keyboard shortcut under Windows.

Comment
In the Comment field, you can enter remarks for the benefit of developers who
maintain the form.

Type
Specify the form type in this field; there are several types to choose from:

� The form we’re creating in the example shown in Figure 4-2 on page 78 is a
Document type, which means that it is a main document.

� A Response type means that it is linked to a main document of type
Document. A Response document cannot exist without a parent.

� A Response to Response type adds a third level to the document hierarchy. It
can be created as a response to any of these three types of document.

Note: The alias should uniquely identify the form. It should be different from
every other form, page and subform name and alias.

The exception is for multilingual applications, where you deliberately use the
same alias in multiple forms to show the same document with a different form
for different languages.

Note: You also can add the underline character (_) to define a keyboard
shortcut.

Example: _Document

The D is now the keyboard shortcut character

To put the form in a submenu under the Create menu item, use the
backslash character (\) in the form name; for example: “Requests\Work
orders” to create a “Request” submenu.

Note: If you want to have a multiple-level hierarchy, as in a discussion
database, it is not necessary to define separate Response and Response to
Response forms; only the Response to Response form is needed.
 Chapter 4. Domino Design elements: forms 79

Display
� Include in menu

If you want to include the form in the Create option on the menu bar, you have
two options:

– If there are only a small number of forms, they can be displayed directly in
the Create Menu list. Up to nine forms can be listed in the Create option.

Otherwise, use the “\” character to organize them into submenus as
described above. If the list gets too long, you can use Create - Other to get
the complete list of forms.

– If there are many different forms, it is best to use the Create - Other dialog.
You could add the most commonly used forms to the Create Menu list, and
then put the least used forms under the Create - Other dialog option.

� Search Builder

Select the Search Builder check box to add the Response form to the list of
forms that users can use to enter field values for a full-text search.

� Include in Print

Select the Include in Print check box when you want to enable contact printing
for this form. Contact printing, such as label printing, is a special type of
printing where the form is used for printing multiple documents. See the
document “Designing a form for contact printing” in the Lotus Domino
Designer 6 help database for further discussion and design guidelines for
contact printing.

Versioning
In the Versioning field, specify whether or not you want version control. The
following options are available:

� None

� New versions become responses

Use this when the original version is the most important. The original
document is listed first in a view.

� Prior versions become responses

Use this when the new version is the most important. The latest version is
listed first in a view.

� New versions become siblings

Note: Create options are not applicable to Web users, because Web
users do not have the Create menu.
80 Domino Designer 6: A Developer’s Handbook

Use this when all versions have equal importance. The original document is
listed first in a view. All successive versions follow as additional main
documents, without introducing the risk of replication or save conflicts.

� Create versions

If you decided to work with versioning, there are two create version options:

– Manual-File, New Version creates a new version of the document when
the user chooses File - Save as New Version.

– Automatic-File, Save creates a new version of the document each time the
user saves the document.

Options
� Default database form

Domino uses a default form to open documents whenever their associated
form has been dropped from the database design. You should select the
Default database form option for the main form of the database.

� Store Form in Document

Leave the Store Form in Document check box deselected.

You should only store the form in the document if, for example, a user that has
no access to the database receives a document and has no access to the
design of the form used to create the document. For Web users, this option is
supported in read mode, but do not use it for documents that need to be
created or edited on the Web.

Previously, this option was required to store information entered into OLE
objects embedded on the forms. However, with Domino 6, the OLE object is
always stored as part of the document, not the form, so the main reason for
using stored forms is gone.

� Disable Field Exchange

The Disable Field Exchange check box, which is normally left deselected to
enable data exchange with Notes/FX-compliant applications, is not supported
on the Web.

� Automatically refresh fields

With the option Automatically refresh fields selected, Domino recalculates
fields automatically whenever a field value changes. It is not supported on the
Web. In most cases, it is better to use Refresh fields on keyword change,

Note: Selecting the Store Form in Document option greatly increases the
amount of disk storage required to store each document based on that
form.
 Chapter 4. Domino Design elements: forms 81

which is a property of a keyword field, such as dialog list, radio button. That is
also supported on the Web.

� Anonymous Form

Select the Anonymous Form check box if you want authors or editors to
anonymously enter documents into the database based on this form.

Use of Anonymous forms is appropriate for employee comment databases,
surveys, and suggestion boxes, where users may prefer anonymity.

� No Initial Focus/No Focus On F6

You can change the focus of a form, as follows:

– No Initial Focus - this lets you choose to have no initial focus on the form.

– No Focus On F6 - this lets you disable the F6 and Shift+F6 keys. These
keys usually give focus to a frame. Use for forms and pages that contain
no controls or fields or links; this saves time for users of screen readers, as
they do not have to navigate through frames containing information they
can’t use.

� Sign Documents that Use This Form

As the developer, you can choose whether you want all documents that are
created using this form to be signed electronically by selecting the Sign
Documents that Use This Form option. This enhances the security of the
application.

� Render pass through HTML in Notes

By choosing the Render pass through HTML in Notes option, the
pass-through HTML code entered in the form is also rendered in the Notes
client, not just in the Web browser.

� Do not add field names to field index

Select the Do not add field names to field index option if you want to prevent
the field names on this form from appearing in the field index. The field index

Notes:

Documents created with an anonymous form do not contain the
$UpdatedBy field, but have an $Anonymous field with a value of 1. You
need to ensure that the author’s or editor’s name does not appear in any
other field of the form.

Also, in databases that use anonymous forms, you should turn off usage
history tracking in the database properties. This ensures that the author
cannot be deduced by comparing the creation time and the usage log.
82 Domino Designer 6: A Developer’s Handbook

is used on certain lists, for example when adding Simple Actions that
manipulate or use fields. You can save some memory by checking this option
on.

This is a good choice for forms that are never saved as documents, such as
$$ViewTemplate forms. Details about using $$ViewTemplate forms can be
found in 6.7.6, “Embedding views” on page 230

� Conflict Handling

At the Conflict Handling section of the Form Info tab, choose one of the
following options for the form:

– Create Conflicts - This creates conflicts so that a replication conflict
appears as a response document to the main document.

– Merge Conflicts - If a replication conflict occurs, the conflicting documents
are merged into a single document by combining the edits of those
documents field by field. However, if two users edit the same field in the
same document, Notes saves one document as a main document and the
other document as a response document marked as a replication conflict.

– Do Not Create Conflicts - No merge occurs. Domino simply chooses one
document over another. The other document is lost.

Using the Defaults tab
The Defaults tab lets you specify details regarding the usage of the form; see
Figure 4-3 on page 84.

Tip: Merge Conflicts is a good choice for many forms, and many
companies routinely turn on this option on all forms. It is not appropriate
to use the option with strict data validation requirements, where the
validity of one field may depend on the value on another field.
 Chapter 4. Domino Design elements: forms 83

Figure 4-3 The form properties box showing the defaults tag

The Defaults Tab is divided into five sections, which we discuss in detail as
follows:

On Create
� Formulas inherit values from selected document

When this option is selected, Domino copies the values of the fields in the
parent document to the document or response document that is being
created. The inherit does not work automatically, unless you specify the field
name of the parent document in the field’s default value event. Domino
supports this feature for rich text fields, as well as other field types.

� Inherit entire selected document into rich text field

When selected, this option defines how the fields of the parent document are
displayed in the response document. To inherit the parent document, a Web
browser user must open an existing document before creating the new

Note: Inheritance from selected documents is supported on the Web, and
as with Notes, it works only between documents that reside in the same
database.
84 Domino Designer 6: A Developer’s Handbook

document. To enable Web users to create a new document from an open
document, you must provide a form action.

On Open
� Automatically enable Edit Mode

When selected, this option opens the document in edit mode from either a
Notes client or a Web browser.

� Show Context Pane

When selected, this option displays the parent document to end users in the
Preview Pane of the Notes client.

On Close
� Present mail send dialog

When selected, this option causes the Mail Send dialog box to appear so that
the users have the option of mailing, saving, signing, or encrypting a
document.

On Web Access

� Content type

Choose the type of content by selecting Notes, HTML, or Other. If you select
HTML, Domino passes all data on the form directly to the browser. If you
select Other, you will need to specify what the content type is. This could be
any type of your choice.

� Generate HTML for all fields allows the developer to use hidden fields for
programming in Web applications.

Use the three color selections (Active line, Unvisited link, Visited link) to
determine how links will be displayed in a Web browser.

Note: You must also have certain fields on the form for this to work.
The only mandatory field for this feature to work is SendTo, but you also
need a couple of other fields to form the e-mail message. Refer to
document “Reserved fields that control mailing options” in the Domino
Designer 6 Help for more information.

Note: These options, which are new with Domino 6, allow you to specify,
among other things, the type of content on your form. This will enable you to
program and control the content of your form without Domino adding
Domino-specific tags or other information on your forms.
 Chapter 4. Domino Design elements: forms 85

Data Source Options
Data Connection Resources (DCRs) bring the technology of Domino Enterprise
Connector Services (DECS) into Designer so that you can define a connection to
an external data source, such as a relational database, and use the connection
to link the fields in a form to fields in the external source. DCRs are reusable in
an application and can be shared across applications. Using DCR technology,
you can access data in enterprise systems; Figure 4-4 shows the Data Source
Options properties.

� Browse

If you have already created data connection resources in the database, you
can browse for data resources to use on the form. If you do not have a data
connection resource set up, this section is greyed out.

a. Click the Browse button in the Data Source Options section.

A Browse External Data Sources dialog box appears, with a list of data
connections resources already created in the database.

b. Default data connection

Select a data connection resource and click OK. The resource populates
the Default data connection field on the Defaults tab of the Form
Properties box. The Default metadata object can be a backend database
table, a view, or a procedure.

c. Default metadata object

Once the user starts to create fields on the form using an external data
resource, the default metadata object can be changed.

Figure 4-4 The Data Source Options properties

Using the Launch tab
The Launch tab, as shown in Figure 4-5 on page 87, enables you to specify what
happens when the document is opened. It gives you the ability to automatically
activate OLE objects and attachments when the document that contains them is
opened, or to automatically follow a doclink or URL link instead of opening the
document.

Note: The Auto Launch feature is not available for Web users.
86 Domino Designer 6: A Developer’s Handbook

Figure 4-5 The form properties box showing the Launch tag

Auto Launch
In the Auto Launch field, specify the type of action to take place when the
document is opened. The following options are available:

� None
� First Attachment
� First Document Link
� First OLE Object
� URL

AutoFrame
� Frameset

The frameset drop-down list allows you to select a frameset which will open
when the user opens the form.

The frameset option works in the same way in a Notes client as in a Web
browser.

� Frame

When you have selected a frameset, you have to select a frame within that
frameset where you would like to open the form.

Using the Background tab
Click the Background tab, shown in Figure 4-6 on page 88, to specify the options
for the form background.
 Chapter 4. Domino Design elements: forms 87

Figure 4-6 The form properties box showing the form Background tag

Color
Specify the background color for the form using the Color drop-down box.

Graphic or Resource

� Paste

If desired, click the Paste Graphic button to paste a graphic image into the
form. If the image is smaller than the form, Domino tiles the image to fit the
size of the form.

� Import

You can also import a graphic image into the form by clicking the Import
Graphic button. Select the graphic image and click Import. The supported
graphic formats are BMP, GIF, JPEG, PCX and TIFF 5.0.

Note: If the image does not fill the entire page, it will be tiled automatically.

Note: You need to copy an image to the clipboard before you click the
button.

Tips:

Domino supports RGB colors, but if you want to insert very high quality
graphics, select the option to import an image. Keep in mind that the
cursor could be difficult to see on some displays if you choose a color
like gray.

It is better to import rather than paste a graphic into the background
because imported graphics are usually of better quality than pasted
graphics.
88 Domino Designer 6: A Developer’s Handbook

� Allow users to change these properties

By selecting this option, users can change the background properties of a
document that uses this form.

Using the Header and Footer tab
Headers work only in a Notes client. If you select to use a header on the form,
you are able to have part of the form in a separate frame. For example, a mail
document has the header above the body of the document. This header always
stays in place when the content of the body is scrolled.

Note that where the header ends and the other part of the form begins is defined
by where your cursor is on the form when you select the Add a header to form
property.

On the Web, Domino produces a table with the header information rather than a
separate frame.

Figure 4-7 An example of a form with a Header
 Chapter 4. Domino Design elements: forms 89

Figure 4-8 The form properties box showing the Header tag

Headers can contain any element that a form can contain. The only caveat is that
a table cannot be the first element in a header—it must be preceded by a text
object, even if the text object is blank (for example, an empty line would be
sufficient, with the table placed on the following line).

Using the Print tab
Click the Print tab to specify the options that relate to printing a document based
on the form; see Figure 4-9. Use the icons listed under the Header and Footer
option buttons to define the date and time, tabs, and page numbering. You can
also select the font, size, and style.

Figure 4-9 The form properties box showing the Print tag

Note: The printing properties set here do not take effect if you are printing
from the Web.
90 Domino Designer 6: A Developer’s Handbook

Using the Security tab
Use the Security tab to define which users or user groups are authorized to use
the form.

Figure 4-10 The form properties box showing the Security tag

� All readers and above

Deselect the All readers and above check box. This activates the blue person
button to the right of the list. Click the button. A window is displayed that
allows you to select the users and groups from the different address books to
which you have access.

� Who can create documents with this form

Here you specify who can create documents with this form.

The default is All authors and above. If required, deselect the check box, and
click the blue person button to the right of the list. A window is displayed that
allows you to select individual users and groups.

Tip: For professional-looking applications, you should always define a print
header and footer for every form that might be printed from the Notes client.

Tip: Assign access to forms using Role names rather that groups or individual
user names. This makes your design more reusable and easier to administer.
 Chapter 4. Domino Design elements: forms 91

� Disable printing/forwarding/copying to clipboard

If required, select Disable printing/forwarding/copying to clipboard. This
makes it more difficult for users to distribute the documents created with this
form to other users. It is recommended that you limit this option to confidential
data.

Note: Selecting this option does not prevent the user from using other
software to copy data.

� Available to Public Access users

Select this option, if required. This allows users with No access or Depositor
access to see specific documents and forms, without giving them reader
access to the entire database.

4.1.2 Giving the form a window title
To give your application a professional look, always define a window title formula.
The title will appear on the Notes title bar when a document is created or edited,
based on the form in Notes and on the browser title bar when a document is
created or edited in browser.

Following is an example of a window title that can be used from either a Notes
client or a Web browser:

@If(@IsNewDoc;"New Document";"Document: " + Subject + " created by " +
DocCreatedBy)

Subject is a field of the form, where the document author type is the subject of
the document. DocCreatedBy is a field of type Computed when composed on the
form, with the formula @Name([CN];@UserName). @Name([CN];@UserName)
returns the common name part of a user name.

If the document is a new document (@IsNewDoc), the title is set to New
Document. If the document already exists in the database, the title is set to
Document: Subject created by Username.

4.1.3 Form events
Table 4-3 on page 105 lists all form events in Domino 6.
92 Domino Designer 6: A Developer’s Handbook

Table 4-1 Form events in Domino 6

Events Language Description Notes Web

Window Title Formula Calculates text to display in the title bar of the
document window.

Yes Yes

HTML Head
Content

Formula Contains HTML tags to add to the <HEAD>
tag, in addition to those generated
automatically by Domino server.

No Yes

HTML Body
Attributes

Formula Contains additional attributes of the HTML
<BODY> tag.

No Yes

WebQueryOpen Formula Runs an agent before a Web document
displays. The formula must use the following
syntax: @Command([ToolsRunMacro];
“agentname”).
Tip: You can also enter different types of
formulas here without calling an agent.

No Yes

WebQuerySave Formula Runs an agent after a form is submitted from
the Web.
Must use the syntax:
@Command([ToolsRunMacro]; “agentname”).
Tip: You can also enter different types of
formulas here without calling an agent.

No Yes

Target Frame Formula The frame pages, views and forms will open if
no default frameset has been specified in the
hotspot action properties

Yes Yes

JS Header JavaScript You can put JavaScript functions in here.
Note: In Domino 6, you can enter separate
content for Notes clients and Web browser
Tip: It is more efficient to use JavaScript
libraries than long scripts here.

Yes Yes

onClick JavaScript Runs when an object is selected. Yes Yes

OnDblClick JavaScript Runs when an object is selected with a
double-click.

Yes No

onHelp - Client Formula
LotusScript
JavaScript

Opens a specified page in Help; opens a page
if the user chooses Help or presses F1.

Yes No

onHelp - Web JavaScript Runs when help is selected. No Yes

onKeyDown JavaScript Runs when a key is pressed. No Yes
 Chapter 4. Domino Design elements: forms 93

onKeyPress JavaScript Runs when a key is pressed. No Yes

onKeyUp JavaScript Runs when a key is released. No Yes

onLoad - Client Formula
JavaScript
LotusScript

Runs when document is finished loading. Yes No

onLoad - Web JavaScript Runs when document is finished loading. No Yes

onMouseDown JavaScript Runs when a mouse button is pressed. No Yes

onMouseMove JavaScript Runs when the mouse is moved. No Yes

onMouseOut JavaScript Runs when the mouse is moved out of an
object.

No Yes

onMouseOver JavaScript Runs when the mouse is moved over an
object.

No Yes

onMouseUp JavaScript Runs when a mouse button is released. No Yes

onReset JavaScript Runs when document is reset by button.
Triggers the form.reset.action.

No Yes

onSubmit - Client
(New for
LotusScript)

Formula
JavaScript
LotusScript

Runs when document is submitted. Yes No

onSubmit - Web JavaScript Runs when document is submitted. No Yes

onUnload - Client
(New for
LotusScript)

Formula
JavaScript
LotusScript

Runs when a document is exited. Yes No

onUnload - Web JavaScript Runs when a document is exited. No Yes

(Options) LotusScript Applies to all scriptable objects and provides
an area for statements (Use, Option, Const,
Def).

Yes No

(Declarations) LotusScript Applies to all scriptable objects and provides
an area where all global variables are
declared.

Yes No

Queryopen LotusScript Runs before a document is opened. Yes No

Postopen LotusScript Note: Use is discouraged. Use onLoad - Client
instead.

Yes No

Events Language Description Notes Web
94 Domino Designer 6: A Developer’s Handbook

4.2 Creating a field
In this section we describe how to create a field in a form, and how to change the
properties of the field.

We will add a combobox field in the form. This field will demonstrate how to use
keyword fields on the Web. The combobox field will allow you to choose one
keyword.

1. To begin, create a new TeamRoom database as described 3.1.1, “Creating a
database” on page 48.

2. Open the Main Document form listed in the View pane.

3. Type the static text: Background Color; refer to Figure 4-14, “The TeamRoom
database in Notes 6” on page 98.

4. Next to the static text, create the field Color. To do so, select Create - Field.

Querymodechange LotusScript Runs before a document is changed to Read
or Edit mode.

Yes No

Postmodechange LotusScript Runs after the user changes the document to
Read or Edit mode.

Yes No

Postrecalc LotusScript Runs after a document is refreshed (and
values are recalculated).

Yes No

QuerySave LotusScript Note: Use is discouraged. Use onSubmit -
Client instead.

Yes No

PostSave LotusScript Runs after the document has been saved. Yes No

Queryclose LotusScript Note: Use is discouraged. Use onUnload
instead.

Yes No

Initialize LotusScript Runs when a document is being loaded. Yes No

Terminate LotusScript Runs after the document is closed. Yes No

Events Language Description Notes Web

Note: Whether an event is supported on the Web or not depends on which
browser is used. Refer to Domino 6 Designer help section “Table of supported
JavaScript objects for automated components” for more information on which
browser supports which events.
 Chapter 4. Domino Design elements: forms 95

Tip: You can also display a pop-up menu by clicking the right mouse button
and selecting Create Field.

5. On the InfoBox for Field, type a name for the field (for example: Color). The
new name is now also shown in the Objects view.

6. In the Type field, choose Combobox.

7. In the field next to Type, keep Editable.

8. Enter 1 in the Position in tab order field. This positions the cursor in this field
when the document is opened.

Figure 4-11 The field properties for the example

9. Switch to the next tab.

10.In the Choices field, keep Enter choices (one per line).

11.In the Choices list box, type: yellow, green and blue. Separate the values by
pressing Enter.

12.In the Programmer’s Pane, leave the Default Value empty. The form and fields
InfoBox should look as shown in Figure 4-12 on page 97.

Note: Remember to change the Frameset field in the forms InfoBox launch
tab to -Blank-.
96 Domino Designer 6: A Developer’s Handbook

Figure 4-12 The Main document form of the Teamroom database opened in Designer

13.Make sure that no check boxes are selected on the Paragraph Hide When
tab.

Figure 4-13 The Paragraph Hide When properties for the example

14.Save the modified form by pressing the Esc key, and confirm that you want to
save the form.

15.Close the information box that is displayed.
 Chapter 4. Domino Design elements: forms 97

4.2.1 Performing a test run
To test your modification from a Notes client, follow these steps:

1. Open a Notes Client and open the Teamroom database.

2. Once the database is open, choose Create -> Main Document.

3. In the document, you will see that there is now an additional field; see
Figure 4-14:

Figure 4-14 The TeamRoom database in Notes 6

4. Select a color for the background and type a document title in the Subject
box.

5. On the Action bar, click Save & Close.

Tip: You can preview the form in the Notes client by selecting Design ->
Preview in Notes... when the form is open in the Designer or when the
form is selected on the forms list. Or you can click the Notes preview icon in
the icon bar to preview the form.
98 Domino Designer 6: A Developer’s Handbook

To see the document, select the By Date view and the document will appear
in the list of documents.

To test your modifications from a Web browser interface, you can use the
Preview in Web browser option in Notes, which will enable you to preview
your form without creating a document.

To do this, choose Design -> Preview in Web browser. If your database is on
a Domino Server, Notes will then use the browser specified in your location
document to preview the form. If your database is on a local machine, Notes
will start the Local Web Preview Process.

Alternatively, you can do the following:

1. Start your Web browser.

2. Enter the following in the location field:

http://Server name/Teamroom.nsf/Main+Document?OpenForm

In the following example, Server name is the current server where the
database is located, Teamroom.nsf is the database name, and
Main+Document?OpenForm opens the new document so that you can edit it.

http://trondheim.lotus.com/Teamroom.nsf/Main+Document?OpenForm

3. You should see the new field in your browser; see Figure 4-15 on page 100.
 Chapter 4. Domino Design elements: forms 99

Figure 4-15 The form with the new field, previewed in a browser

4. Type in the Document title and choose the color for the background.

5. After you have completed the form, click Save & Close.

Earlier we created a Color field to enable the user to change the background
color of the form. We will now make some further updates to the form to add new
functions:

1. From the Domino Designer 6, choose the Forms Design view.

2. Double-click the Main Document form in the View pane to open it.

3. Click the Color field.

4. Select the onChange event from the Objects view.

5. Type the following JavaScript code:

document.bgColor=this.form.Color.options[this.form.Color.selectedIndex].tex
t

The onChange event is a method which occurs when the value in the field is
changed. The object document represents the current Web page, and it has a
property bgcolor, which is the background color of the page.

this.form.Color.selectedIndex
100 Domino Designer 6: A Developer’s Handbook

This returns an integer specifying the option selected in the field. Now that we
know which option is selected, we can use it to return a text string with:

this.form.Color.options[this.form.Color.selectedIndex].text

6. After you have entered the code, the design should look as shown in
Figure 4-16:

Figure 4-16 The Programmer’s Pane showing the JavaScript

7. Preview the form in your browser.

8. When you select the value in the Color field, the background color of the page
should change.

4.2.2 Sharing and reusing a field
You can only reuse fields in the database where the field has been defined as a
shared field.

1. From Domino Designer 6, choose the Forms Design view. The list of forms is
displayed in the view pane.

2. Double-click the Main Document form. The form is displayed.

3. Go to the Color field, created in the previous exercise, and select Design ->
Share this field.

4. Domino will automatically copy that field to the Resources -> Shared Field ->
View pane, where all database shared fields are stored.

5. Save and close the form and open a new form.

Important: Unlike HTML and LotusScript, JavaScript is case-sensitive.

Note: While the Notes client also can execute JavaScript code, not all
dynamic HTML features are supported.
 Chapter 4. Domino Design elements: forms 101

6. In order to reuse the shared fields, choose the form where you want to add
the field; for example, Event -> Form. Choose Create -> Insert Shared
Field, and a window will be displayed.

7. Select the Color field and click OK. The field is now added into the form.

8. Press the Esc key and save the form; see Figure 4-17.

Figure 4-17 The Main Document form with Color field shared

4.2.3 Field types
In this section, we only cover how to create and run keyword fields—but all other
fields work in a similar way. Table 4-2 on page 103 lists the other field types and
their explanations/declarations.
102 Domino Designer 6: A Developer’s Handbook

Table 4-2 The different field types

Field type Declarations Note

Text A normal text field, where a user can enter
text or numbers (if it is an editable field).
Text can be of a string or variant type.

You can resize the field by using the field
properties InfoBox and selecting the Use
native control in the Basic tab, and then
changing the width and height in the
Options tab.
Web doesn’t support this option.
The Designer can hide delimiters around
the field by choosing the Hide Field
Delimiter property.

Date/Time Domino allows you to select different kinds
of date and time formats. Time is the date
type. Field controls such as list boxes and
calendar controls are available on forms.

Domino supports 4-digit year format, and
can display a 4-character year field. Using
calendar controls, enable “Use Native
Control.” Insert date and time in separate
fields.

Number The Number field can count imported
values. Number can be of an integer, float,
or double type.

The Designer can change the decimal
symbols by changing On display
preferences to Custom. The Currency
option lets you select the right country
currency, or you can customize it.

Combobox,
Listbox,
Dialoglist,
Check box,
Radio
Button

These can be of a string or variant type.

Rich Text
Rich Text Lite
(Rich Text
Lite is new in
Domino 6)

Domino allows a user to add text,
attachments, Java applets, and tables in
this field. Rich text can be of a string or
variant type.

Field value can be stored in MIME
format.
Rich text lite fields are rich text fields with a
helper icon and down arrow next to the
field. Clicking the icon gives the user a fast
way to add an object into the rich text lite
field. Objects include Pictures, Shared
Images, Attachments, Views, DatePicker,
Shared Applets, Text, OLE Objects,
Calendar, and Inbox.
Clicking the down arrow displays a
drop-down menu. The elements listed in
the drop-down menu are the only elements
the user is allowed to insert into the rich
text lite field. For more information on the
Rich Text Lite field, refer to Domino
Designer 6 online help.
 Chapter 4. Domino Design elements: forms 103

Table 4-3 on page 105 demonstrates different keyword selection fields and how
they are displayed in a Notes client and Web browser.

Author Security field which allows designers to
control form access. People, groups and
servers who have been added in the field
can open and edit documents. Author can
be of a string or variant type.

The Choices option does not work on the
Web.

Names Helps users enter names correctly in a
document. Provides links to existing lists of
names.

The Choices option does not work on the
Web.

Readers Security field which lets designers control
form access. People, groups and servers
who have been added in the field can open
and read documents. Readers can be of a
string or variant type.

The Choices option does not work on the
Web.

Password Users can add text. Each character is
displayed with an asterisk (*).

Matches Web functionality.

Formula Used for the Subscription feature. Provides
a way to programmatically hold a formula
that can be referred to by some other
process.

Time Zone
(New in
Domino 6)

Lets you display a drop-down list of all
available time zones in the world, including
the local time zone.

Each time zone listed includes a partial list
of the cities or locations found in that time
zone.

Color
(New in
Domino 6)

Lets you display a color picker on a form. The chosen color is stored in hexadecimal
format.

Field type Declarations Note
104 Domino Designer 6: A Developer’s Handbook

Table 4-3 How keyword selections are displayed

Rich Text Field (RTF) applet
This is a good option to use when you want to give Web users opportunities to
write different styles of text. This feature allows you to use italics, bold,
color—and most of the features you would find on a word processor—on a Web
page.

Keyword Notes Client Web Browser (IE 6.0)

Dialog list

Check box

Radio Button

Listbox
Note: Width and height
do not work on the Web.
It formats to the width of
the longest string.

Combobox
Note: Width and height
do not work on the Web.
It formats to the width of
the longest string.

Note: Choosing frame type has no effect on the Web.
 Chapter 4. Domino Design elements: forms 105

One example of where this field is very useful is in a feedback form. After the
user has submitted feedback, Domino saves the document in the database.
Using the RTF applet, Domino also saves the text format and style, which means
that the text is stored in exactly the same format and style as when the user
entered it. Let’s see how this option works.

1. Open the Main Document form.

2. Go to the Body field and open the field’s InfoBox. You can see that the field is
RichText type and that the Use Applet In The Browser option is enabled.

3. When you run the form in Notes, it looks like an ordinary RichText field. But
when you run the form in a Web browser, it should look as shown in
Figure 4-18:

Figure 4-18 The RTF applet in Internet Explorer 6

4. After the user has submitted the document, if you look at the document using
a Notes client, it should look as shown in Figure 4-19 on page 107:
106 Domino Designer 6: A Developer’s Handbook

Figure 4-19 The document viewed in Notes

As you can see, the field contents are stored exactly as the user entered them.

4.2.4 Field properties
Now that you have created a field, we are going to look at some of the properties
of fields contained in the document form.

Let’s first take a look at the Categories Field. We will look at the keyword field and
explain the differences between this field type and other field types.

1. From the Domino Designer 6, choose the Forms Design view.
 Chapter 4. Domino Design elements: forms 107

2. Double-click the Main Document form in the view pane to open it.
Double-click the Categories field. The Field InfoBox is displayed and it looks
ash shown in Figure 4-20:

Figure 4-20 The Field Info properties for Categories

The Field Info tab
On the Field Info tab, Domino displays the field format. This field is of type
Editable Dialog list field.

There are several different ways of displaying the list of keywords from which
users can make their selections. In our example, formula is used to calculate the
list of available values by looking up the values from a view column in the same
database, a View variable is given the “MissionLookup” view name (which is later
used in @DBColumn), and an @DbColumn formula checks all the documents in
the current database for categories and retrieves them for display in a keyword
list.

The Field Info tab also shows how the data is actually put into the field. The
following types of field are available:

� Editable: The user enters the data, or the data is created when the user
selects a button performing a formula or script written by the developer.

� Computed: The field is computed each time the document is created, edited
and saved.

� Computed for display: The field is computed each time the document is
opened in browse or edit mode. The contents of the field are only visible while
the document is open. It is not saved into the database and is not visible in a
view.
108 Domino Designer 6: A Developer’s Handbook

For example, this type of field is used to display the current time and date or
work variables, such as the server name where the database is stored.

� Computed when composed: The field is only computed when the document
is created. This type of field is especially useful for storing the name of the
original author of the document, the creation date, or a document reference
number.

There is also a check box to allow multiple values to be selected at once.

Tab Order properties allow you to select the “time” when the user comes in to this
field while editing the document and moves ahead from field to field using the Tab
key.

Note: The Tab Order default value is zero (0).

Give field default focus: Here you can specify whether the entry field will have the
initial focus when the form is opened. You must specify this option if you want to
place the cursor in an entry field that is not the first one on the form.

Control Options tab
The Control Options tab is shown in Figure 4-21:

Figure 4-21 The Control properties for Categories
 Chapter 4. Domino Design elements: forms 109

There are a number of check boxes, as follows:

� Show field delimiters. This shows the field delimiters of the field.

� Allow values not in list. By choosing this option, you give the user a chance
to enter a value which is not on the list.

Note: This feature is not available for Web users.

� Display entry helper. This displays the small grey down arrow in the bottom
right-hand corner of the field to tell the user that there are multiple options to
select from.

Note: This feature is not available for Web users.

� Refresh fields on keyword change. This will force the document to refresh
its fields if the value in the field is changed. This option should be used
sparingly because if you have a form containing a large number of fields, it
takes some time to recalculate all the formulas, which can often result in
users experiencing a lengthy wait.

� Refresh choices on document refresh. This option is used to refresh the
values in the field (usually based on a formula) if the document is refreshed.

Note: This is not applicable for Web browsers, because choices are always
refreshed on page refresh.

Note: The content of the Control Options tab, as with some other tabs, varies
based on the field type. For example for a text field, the Show field delimiters
is the only visible option.
110 Domino Designer 6: A Developer’s Handbook

Advanced tab
The Advanced tab is shown in Figure 4-22.

Figure 4-22 The Advanced properties for Categories

This tab enables you to specify:

� Help Description: information is shown at the bottom of the Notes client
screen. Screen reader programs for the visually impaired also may speak this
text; although this is not a required field, it’s good practice to always supply a
value here.

Note: Field help is not available for Web users. If you require field help in a
browser application, you could use the JavaScript onFocus event to update
either the message area of the browser window or a separate field.

� Field Hint: text that assists the user to fill in the field. This text disappears
when the user moves the cursor into the field, and is not saved with the
document.

Note: This is a new feature with Domino 6

� Multi-value separators. You can define what characters define a multi-value in
a field. Most common is to use a comma. You can also define what is used to
display the separate values.

� Security options: for example, Enable Encryption for this field.

Note: All security options are not available for Web users.

Fonts tab
The Fonts tab of the InfoBox lets you specify fonts and colors for the field data; it
is shown in Figure 4-23 on page 112.
 Chapter 4. Domino Design elements: forms 111

Figure 4-23 The Font properties for Categories

Paragraph Alignment tab
The Alignment tab sllows you to specify the alignment of the paragraph
containing the field. You should use this option, for example, if you define a field
to be used as the title.

If you choose to align it in the center of the form, it will stay in the center
irrespective of the screen resolution used. The Alignment tab is shown in
Figure 4-24.

Figure 4-24 The Paragraph Alignment properties for Categories

Restriction: Web browsers pay no attention to font attributes when a
document is in edit mode.
112 Domino Designer 6: A Developer’s Handbook

Paragraph Hide When tab
The Hide When tab is shown in Figure 4-25.

Figure 4-25 The Paragraph Hide When properties for Categories

Example: You can use a formula to restrict a field so that only one group of
people can see it:

� Create a Friend group in the server’s Public Address Book.

� Select the Hide paragraph if formula is true option and add the following
formula in the formula window:

!(@IsMember(“Friends”; @UserNamesList))

The @IsMember() formula checks if the Friends group is one of the values in the
list returned by @UserNamesList.

Note: The exclamation point character (!) is the logical not operator. Many
developers find it easier to write a show when formula rather than a hide when,
and then use !() to reverse the test, as we have done here.

The @UserNamesList formula returns a text list of the current user’s name and
all their groups and roles. If the user has been added to the group named
Friends, they can see the field and database.

Several check boxes are available to hide the paragraph on predefined
conditions. You can also specify other conditions using an @function.
 Chapter 4. Domino Design elements: forms 113

HTML Properties tab
The HTML Properties tab is shown in Figure 4-26.

Figure 4-26 The Field HTML properties for Categories

This tab is used not only for fields, but also for many elements that appear in
forms, pages, and framesets. It lets you specify values to appear as attributes of
the field when the document is rendered in HTML by the Domino web server.
These settings have no effect in the Notes client.

The Id, Class, Style and Title fields let you specify the values that will appear
after the id=, class=, style= and title= attributes of the HTML tag. You can read
about these attributes in HTML references.

Tips:

When possible, use the hide check boxes instead of formulas for better
performance.

@UserRoles and @UserNamesList are frequently used in hide formulas, but
they are “expensive” to evaluate. For better performance, create a multi-value
“Computed for Display” field and use @UserRoles or @UserNamesList for its
formula; hide formulas can then refer to that field. This way you only have to
evaluate the @function once

Notes:

The InfoBox of each design element found in a form provides a tab that allows
you to specify hide when conditions.

The paragraph alignment and hide properties apply to the entire paragraph
containing the field, not just for the field.
114 Domino Designer 6: A Developer’s Handbook

Note: The values you enter in these fields should not contain quotes; Domino will
insert those.

The Other field lets you enter any additional HTML attributes you want to insert
into the tag for the field. In this case, you supply the entire attribute, including any
quotes required, as shown in the example.

4.2.5 Special fields
This section describes the use of some of the special fields.

The $$Return Field
The $$Return field is used for creating messages that will be displayed after the
user has submitted a document on the Web. The field should be of type
“Computed for display”, whose value formula contains the HTML you want to
display or the URL you want to go to after the form is accepted. (Without the
$$Return field, Domino responds with the default response: Form processed.) To
customize this response message, you can include HTML code as part of the
formula for the $$Return field.

You can also use a $$Return field to run a custom Common Gateway Interface
(CGI) program immediately after the user submits the form and Domino has
created the document. For example, you can run a CGI program that uses the
Notes API to further process the input data. The Web client displays the output of
the CGI program to the user.

To run a CGI program, include the URL to the CGI program file and enclose it in
square brackets []. Note that you can pass arguments (for example, values from
fields in the form) to the CGI program, as part of the URL.

Returning to another page
You can display another Web page to the user, once a form has been processed,
instead of sending the default message. The following example displays the
Lotus home page, but you can, for instance, direct the user to the main view of
the database instead:

“[http://www.lotus.com]”

The preceding is the formula you would use for the field. You may either use one
set of square brackets, as shown above, or two sets, as shown below:

Tip: Screen reader programs for the visually impaired speak the text you
supply in the Title HTML attribute. We definitely suggest you enter a value
here, even if this is for use in the Notes client.
 Chapter 4. Domino Design elements: forms 115

“[[http://www.lotus.com]]”

These variations do slightly different things:

� If you use single square brackets, the Domino server sends the URL to the
Web browser, and the browser goes to that URL.

� If you use double square brackets, however, the Domino server does not send
the URL to the browser. Instead, it fetches the page itself and sends the
HTML to the browser, under the “CreateDocument” or “SaveDocument” URL
used to submit the document.

In cases where the $$Return URL is on the same Domino server, it makes sense
to use double square brackets in order to save the extra “round trip” of the
browser requesting the new URL and the server sending the page. If you know
what page the browser will request, you can send the page instead of forcing the
browser to make that request.

Adding a link to another Web page
In the response message, you can include links to other Web pages. In the
following example, an HTML page will be created with a link to the Lotus home
page. The user will see a blank screen with a link to the specified Web page once
the form has been processed:

“Lotus”

Adding links is useful if, for example, you want to provide the user with a choice of
Web pages to visit once a form has been processed.

Personalized messages
You can create a personalized message for the user who submits a form. For
example, the following $$Return formula returns the response: Thank you for
your document and appends the user’s name. <h2> </h2> is an HTML tag and
means that text between those tags is a second level header. <hr> creates a
horizontal rule.

Note: One disadvantage of double brackets is that the URL used to submit the
form remains the current URL. If users refresh the page, they will be asked
whether to resubmit the document.

Tip: If the HTML of your post-submit page is at all complex, you may find it
easier to create a page design element and return the URL to that page
instead. Pages can contain computed text, so you can still include username
or other variable info. You also need to worry less about HTML syntax, as you
can use familiar elements to form the page with Domino Designer.
116 Domino Designer 6: A Developer’s Handbook

"<h2>Thank you for your document, "+@Name([CN];@UserName) +"! </h2><hr>"

Note: In order for the @Name function to work, you need to authenticate with the
Domino server when first opening the database; otherwise, you will be classified
as an Anonymous user of the application.

$$Return example from TeamRoom template
The TeamRoom template has a rather complex $$Return field, but going through
the code gives you some good examples of how you could use this field. The
$$Return field is a shared field and you can open the field by going to the Shared
Code - Fields design view and double-clicking the field.

You can use the REM command to add a comment for the formula. For example:

REM “This $$Return field returns HTML as a result of the successful form
submittal.”;
REM;

First, simple strings are assigned to variables to make it easier to write and to
read formulas:

REM “Variables to translate”;
PrevDoc := “Open the page you just submitted”;
Another := “Create Another: “;
TRreturn := “Return to the TeamRoom”;
Done := “Done”;
Subteam := “Subteam Profile”;
Participant := “Participant Profile”;
Event := “Event Profile”;
MainTopic := “TeamRoom topic”;
Mission := “Mission Page”;
Response := “Response”;
IntProfile := “Interest Profile”;
ArcProfile := “Archive Profile”;
TeamStatus := “Team Status”;
SubteamStatus := “Subteam Status”;

The formula takes the current user name and adds that and the “Thank You, ”
text into the ThankPerson variable:

ThankPerson := "Thank you, " + @Name([CN]; @UserName);
ThankYou := ThankPerson + ". The following page has been successfully
submitted: ";
REM "End variables to translate";
REM "Get the name of this database.";

The following formula gets the name of the current database and replaces any
spaces with the plus (+) character and replaces any backslash characters with
 Chapter 4. Domino Design elements: forms 117

the forward slash character (/). @DbName is a function that returns the name of
the current Domino server and the name and the path of the database. @Subset
with the -1 parameter returns just the database name and path:

DB := @ReplaceSubstring(@ReplaceSubstring(@Subset(@DbName; -1); " "; "+");
"\\"; "/");

We get the value from the webButtonPressed field:

FIELD webButtonPressed := webButtonPressed;

As part of the “Thank you” screen, we want to display the document title. The
field containing the text is different for each form, and the shared field is used by
every form. So, we test which form was just saved and copy the title from the
appropriate field for that form.

As the $$Return field is a shared field in this database, the formula first
determines which form was used:

Title := @If(Form = "MainTopic"; MainTopic;
Form = "Subteam"; Subteam;
Form = "ParticipantProfile"; Participant;
Form = "Event"; Event;
Form = "Response"; Response;
Form = "ResponseToResponse"; response;
Form = "Interest Profile"; IntProfile;
@Contains(form; "Archive"); ArcProfile;
Form = "Mission"; Mission;
Form = "Status"; TeamStatus;
Form = "SubteamStatus"; SubteamStatus; "");

We format the message to return to the user.

Thanks := "<h3>" + ThankYou + Title + "</h3><hr>";

We create a link so that the user can return to this document.
@Text(@DocumentUniqueID) returns the unique ID of this document:

existingdoclink := "<a href=/" + db + "/($All)/" +
@Text(@DocumentUniqueID) + "?OpenDocument>" + PrevDoc +
" ";

The String variable contains a link which returns the user to the WelcomePage:

LinkTRReturn := "" + TRReturn +
"";

Tip: With Domino 6, the @WebDBName function can be used instead of the
above.
118 Domino Designer 6: A Developer’s Handbook

We create a button which closes the current window:

LinkDoneButton := "<FORM><INPUT TYPE=\"button\" VALUE=" + Done + "
onClick=\"window.close(self)\"></FORM>";

The next three string variables contain links to the different forms:

LinkCRParticipant := " <a href=/" + DB + "/" +
"ParticipantProfile?Openform>" + Participant + " ";
LinkCRSubteam := " <a href=/" + DB + "/" +
"Subteam?Openform>" + Subteam + " ";
LinkCREvent := " <a href=/" + DB + "/" +
"Event?Openform>" + Event + " ";

The bkgd variable contains a background color (#ffffff = white):

bkgd := "<body bgcolor=\"" + "#ffffff" + "\"+ >";

We then concatenate the variables into two text strings:

REM "Assemble the HTML to be returned";
OkMsg := bkgd + Thanks + existingdoclink + LinkTRReturn;
CancelMsg := mkgd + Thanks + LinkDoneButton + Another + LinkCRParticipant +
LinkCRSubteam + LinkCREvent;

Finally, an @If formula checks which of the two strings should be returned as a
response to the user:

REM "Because the Part Profile, Subteam, and Event are created in a smaller
window, we\'re using a different msg. when they\'re new docs.";
@If(webNewDoc = "1"; CancelMsg;OKMsg)

Note: You can also use the onSubmit event in the form to control the forms
submit process. To use the onSubmit event, you will need to use JavaScript.

Other special fields
Table 4-4 lists other special fields.

Table 4-4 Reserved fields for general use

Field name Use

$VersionOpt Controls version tracking for documents.

FolderOptions Puts new documents in folders.

SecretEncryptionKeys Encrypts documents with secret, rather
than public, encryption keys.

HTML Passes HTML directly to the browser.
 Chapter 4. Domino Design elements: forms 119

There are still other reserved fields used in more specialized applications; for
detailed information about those fields, refer to the Domino Designer 6 online
help.

4.2.6 Field events
Field events are functions that can be implemented using formulas, LotusScript,
or JavaScript.

Table 4-5 lists all the Fields events.

Table 4-5 Field events

$$HTMLHead Passes HTML information to be hosted
within the <HEAD> tag for a document.
The passed information might be meta
data (using a <META ...> tag) or
JavaScript code (using a <SCRIPT ...>
tag) or CSS information (using a <STYLE
...> tag).

Field name Use

Events Language Description Notes Web

Default value Formula When the document is loaded
the contents of the Default
Value event are displayed.

Yes Yes

Input translations Formula Can be used to modify the data
entered by the user, to trim
blanks, and to change users’
names into uppercase or
propercase.

Yes Yes

Input validation Formula Tests whether the field contains
a legal value; this formula,
evaluated when the user tries to
save the document, returns a
value that either indicates
success, or contains a
message to display to the user.

Yes Yes

HTML Attributes Formula Allows you to add extra HTML
attributes to the field tag that
Domino generates.

No Yes
120 Domino Designer 6: A Developer’s Handbook

onBlur - Client
(New for
LotusScript)

JavaScript
LotusScript

Runs when user exits the field. Yes No

onBlur - Web JavaScript Runs when user exits the field. No Yes

onChange JavaScript Runs when the field value
changes.

No Yes

onClick JavaScript Runs when field is clicked. No Yes

onDblClick JavaScript Runs when field is
double-clicked.

No Yes

onFocus - Client
(New for
LotusScript)

JavaScript
LotusScript

Runs when user gives input
focus to the field.

Yes No

onFocus - Web JavaScript Runs when user gives input
focus to the field.

No Yes

onKeyDown JavaScript Runs when a key is pressed
down.

No Yes

onKeyPress JavaScript Runs when a key is pressed. No Yes

onKeyUp JavaScript Runs when a key is released. No Yes

onMouseDown JavaScript Runs when a mouse button is
pressed.

No Yes

onMouseMove JavaScript Runs when the mouse is
moved.

No Yes

onMouseOut JavaScript Runs when the mouse is
moved out of an object.

No Yes

onMouseOver JavaScript Runs when the mouse is
moved over an object.

No Yes

onMouseUp JavaScript Runs when a mouse button is
released.

No Yes

onSelect JavaScript Runs when a user selects text
in a text field.

No Yes

(Options) LotusScript Applies to all scriptable objects
and provides an area for state-
ments (Use, option, Const,
Def).

Yes No
 Chapter 4. Domino Design elements: forms 121

Note: The onFocus event is not triggered if the field gets the initial focus when a
document is opened.

4.2.7 Examples using different field types and events
This example shows a simple example of the use of fields and their values;
Figure 4-27 shows the form in Designer 6.

Figure 4-27 Fields in Designer 6

The form uses four fields:

� Quote - a text field, computed for display

� FirstName - an editable text field

� Time - a computed date/time field

� DateCreated - a computed when composed date/time field

(Declarations) LotusScript Applies to all scriptable objects
and provides an area where all
global variables are declared.

Yes No

Entering LotusScript Note: Use is discouraged. Use
onFocus - Client instead.

Yes No

Exiting LotusScript Note: Use is discouraged. Use
onBlur - Client instead.

Yes No

Initialize LotusScript When field is being loaded
(user clicks the button, for
example).

Yes No

Terminate LotusScript When field is being closed. Yes No
122 Domino Designer 6: A Developer’s Handbook

Figure 4-28 shows what this form looks like in the Notes 6 client.

Figure 4-28 Fields in Notes 6

In the Notes 6 client, the fields have different values, based on the formulas and
settings we set for these fields in the Designer:

� Quote - a computed for display field.

For this example, it has a computed value getting a random quote for each
time this form is opened or refreshed:

tmpView := "lupQuotes" ;
tmpQuote := @DbColumn("Notes" : "NoCache" ; @DbName ; tmpView ; 1) ;
@If(@IsError(tmpQuote) ; @Return("") ; "") ;
elements := @Elements(tmpQuote) ;
random := @Round((elements-1) * @Random + 1) ;
tmpQuote[random]

The code does a lookup in a view containing all “quotes” registered in the
database. It performs an error-check to ensure that no error is returned to the
end user. If there are any quotes found in the view, the formula returns a
random quote, using a random function and getting this value from the
array/list of quotes returned from the lookup.

The value of the field “Quote” is not saved with the document, since this is a
computed for display type of field.

Tip: Depending on the type of the field, each field has its own look in the
Designer client. Each field has an icon representing the field type, to avoid the
need to open the property box of each field to check the field type.

As you can see in Figure 4-27 on page 122, the Time and DateCreated field
have a icon representing a calendar, which again indicates that it is a
“Date/Time” field. The Quote and FirstName field has a “T”-icon, which
indicates that it is a “Text” field.
 Chapter 4. Domino Design elements: forms 123

� FirstName - an editable field, with no default value.

The text “Please enter your first name here” shown in Figure 4-28 on
page 123 is not the default value of the field. This is a new feature of
Domino 6 called “Field Hint”, which describes what a user should enter to this
field.

As the user moves the cursor inside this field, the field hint is erased. “Field
Hints” are not saved with the document. For more information about field
hints, refer to 12.14.1, “Field hints” on page 461.

The field has a “Input Validation” formula:

@If(@ThisValue = "" ; @Failure("You need to enter your first name") ;
@Success)

If no value is entered in the FirstName field, end users will receive an error
telling them to enter a value in the field.

The field FirstName also has an “Input Translation” formula, as follows:

@ProperCase(@ThisValue)

The “Input Translation” will ensure that the first letter of every word in the
FirstName field always will be a propercase.

� Time - a computed field that is evaluated for each time the document is
opened, refreshed, and saved.

The code in the field is:

@Now

The field will show current date and time, and the value will be saved to the
document.

� DateCreated - a computed when composed field that is only calculated once,
when the document is created.

The code in the field is:

@Date(@Created)

The field will show the date when the document was created, and the value
will be saved to the document.

Note: @ThisValue and the array subscript operator (as in tmpQuote[random])
are new features of Domino 6, and are explained in detail in Chapter 12, “New
features in Domino 6” on page 347.
124 Domino Designer 6: A Developer’s Handbook

4.3 Sharing design elements with subforms
Subforms provide a way to avoid duplicating the design of section of a form. With
subforms, you can ease the development effort because you can maintain a
group of elements in one place, and use the same subform in many forms.

All design elements that are added to forms can also be used in subforms. These
include:

� Static text and pictures
� Fields, whatever their type and format
� Hotspots as buttons or links
� Tables
� Action Bar
� Java applets
� Embedded elements
� Another subform

When you modify an existing subform, the changes are immediately reflected in
all the forms that use the modified subform.

Note: You can insert subforms into a table or even into another subform.

A subform is provided with the TeamRoom template. You can work with its design
in one of the following ways:

� From Domino Designer 6, select the Shared Code -> Subforms design view.
The list of subforms is displayed in the view pane. Double-click the Shared
Response Header subform. This subform is used to share hidden fields
which are common to both Response and Response To Response forms. The
Subform Builder window is displayed.

� Alternatively, you can open the subform directly from the form. To do this,
open any form that contains the subform (Response or Response To
Response). Once the form is open, double-click the subform part of the form.
The Subform design element is displayed on its own window.

Tip: You might have to scroll through the form to see the subform part. As
Figure 4-29 on page 126 shows, the Subform Builder window is identical to
the Form Builder window.
 Chapter 4. Domino Design elements: forms 125

Figure 4-29 The Subform design view

It contains the following areas:

� The form in the design pane.

� The actions linked to the subform in the action pane. When a form and a
subform are displayed, the action bars of both the form and the subform are
shown.

� The field definition in the Programmer’s Pane. In subforms, as in forms,
@functions, LotusScript and JavaScript can be used.

4.3.1 Creating a new subform
To create a new subform into the database, do the following.

1. From Domino Designer 6, select the Shared Code -> Subforms design view.
2. Click New Subform; a new subform is created.
3. Design the subform content.
4. Close the subform, give it a meaningful name, and save it.

Note: The subform does not contain all the events that a form has, such as
the Window title, onSubmit, onReset, HTML Head Attributes, HTML Body
Attributes, WebQueryOpen, or WebQuerySave, because the subform is
always linked to a form and the form already contains those events.
126 Domino Designer 6: A Developer’s Handbook

To insert the new subform into a form:

1. Open a form.
2. Select Create -> Resource -> Insert Subform.
3. Select the subform you want to insert from the dialog box. (Figure 4-31 on

page 128 shows you an example of an Insert Subform dialog box.)

To display the subform properties:

1. On the Subform pane, click your right mouse button.
2. Select Subform Properties and the InfoBox is shown; see Figure 4-30.

Figure 4-30 The Subform properties box

With Domino Designer 6, more features have been added to the Subform.

– The ability to display your Pass Through HTML in Notes.
– The option to exclude the field names from the field index.
– A security tab on which you can specify who can access this subform

3. Close the InfoBox.
4. Close the subform.

4.3.2 Removing subforms
You can remove subforms from the design of a form, or from the design of a
database.

If the subform is no longer needed in a particular form:

1. Open the design of the form.
2. Click the subform area.
3. Choose Edit -> Delete on the menu bar.

4.3.3 Adding subforms to a form
You can add subforms to a form by adding them by yourself, or based on a
formula.
 Chapter 4. Domino Design elements: forms 127

1. First, create some subforms (at least two).
2. When your subforms are ready, open the Main Topic form.
3. Create a subform by choosing Create -> Resource -> Insert Subform.

A dialog box is displayed (shown in Figure 4-31).
4. Select the subform you want to add and click OK.

You can use computed subforms to show different elements to different users.
Which subform is loaded is based on a formula, so you can load different
subforms for different groups. You can also use different subforms for Web users
than for Notes users. To add a subform by a formula, select Insert Subform
based on formula.

Figure 4-31 The Insert Subform dialog box

Figure 4-32 on page 129 shows a computed subform created on the form.

Note: In Domino Designer 6, you now have the ability to access Shared
Code from other databases. In other words, you can insert a subform from
a different database.

One example of this could be a standard header for all the forms in your
databases, containing for example the company name of logo and some
other consistent information.
128 Domino Designer 6: A Developer’s Handbook

Figure 4-32 A form with a computed subform

You have to specify a formula in the Programmer’s Pane. The formula returns
a text string which is the name of the subform to be loaded.

Looking at a computed subform
To look at a completed subform, follow these steps:

1. You should still be in the document form.

2. Click the computed subform once.

3. Add the following formula in the Computed(subform) - Default Value - Events
Programming pane:

@If(@ClientType="Notes";"NotesSub";"WebSub")

@ClientType is a formula that determines whether the user is using a Notes
client or a Web client. The result of the preceding formula is a text string,
NotesSub or WebSub. If the user is using a Web client, the WebSub subform
is loaded. If the user is using a Notes client, the formula returns the string
NotesSub and the NotesSub subform is loaded.

Note: If the formula returns an empty string, no subform is loaded.

Using a computed subform is a good way to show some elements only to one
type of client, or to users who have different roles. For example, one user can
read information or provide content to the Web site, while another user may have
the authority to approve information for the Web.
 Chapter 4. Domino Design elements: forms 129

4.4 Displaying a different form to Web, Notes, and
mobile users

Perhaps the easiest way to show different things to different users is to use
different forms. This is most useful when the information you want to show to
Web users, Notes users, and mobile users differs considerably, or where Web or
mobile browsers do not support the features used in your forms.

To use different forms for Web users, Notes client users, and mobile users, follow
these steps:

1. You need to create three forms: one for Web users, one for Notes users, and
one for mobile users.

2. Make sure that all three forms have the same alias part of the name, which
follows the vertical bar (|); this way, the same value is saved in the Form field.

3. The names of the forms can also be the same, but it’s much more useful to
give them different meaningful names. In this way, you can easily determine if
the form is for use by Web users, Notes users, or mobile users. For example,
you could name them as Main Document (Web), Main Document (Notes),
and Main Document (Mobile).

Note: Even if the names of the forms will be the same, you can tell them apart
in the design view by looking at Web, Notes, and Mobile columns on the right.

4. After creating the three forms, you need to make them available only for Web
users, Notes users, or mobile users.

From the standard navigator, choose Design, then Forms. The list of forms is
displayed. Click the form and click the Properties icon. The InfoBox is
displayed. Go to the Design tab, as shown in Figure 4-33.

Figure 4-33 The Design Properties for the My Document form
130 Domino Designer 6: A Developer’s Handbook

5. On the Hide design element from section, select:

– Web browsers and Mobile clients if the form is only to be used in Notes, or
– Notes R4.6 or later clients and Mobile clients if the form is only to be used

on the Web, or
– Web browsers and Notes R4.6 or later clients if the form is only for Mobile

users

Domino 6 will determine what type of client is accessing the form, and apply the
necessary Hide When formulas. When the user opens a document, whether on
the Web, or in Notes, or from a mobile device, the correct form will then be used
to display the document.

4.5 Layout regions
A layout region was generally used when creating dialog-like forms and in
@Dialogboxes in Notes R4. It still supported for backward compatibility.

A layout region consists of a 32-bit graphic that contains several kinds of design
elements, such as fields (except for rich text, rich text lite, password, formula,
dialog, time zone, and color), static text and buttons. However, Java applets,
objects, attachments and embedded objects are not allowed.

Note: All Domino elements can be hidden from a Web client, Notes client,
or a mobile client.

Note: Layout regions are not supported for Web browser or mobile clients.

We recommend that you do not use layout regions in your applications, as
they are not supported by Web or mobile clients. If you are using layout
regions for absolute positioning reasons, consider using a page or a form with
a table and OS-style fields instead. This will enable you to reach the same
functionality, use the same element for all clients, and use design elements
that you could not use within layout regions.

Another advantage of tables over layout regions is that in most cases, they
automatically have a sensible tab order of the fields and controls—whereas
with layout regions, it is more difficult to get them in the right order.

You can also consider using a new feature in Domino Designer 6, called
Layers, to reach the functionality you want to achieve by using layout regions.
More information about Layers can be found in 12.10.1, “Layers” on page 417.
 Chapter 4. Domino Design elements: forms 131

4.6 Working with collapsible sections
If the form design includes a long set of fields or fields that contain large amounts
of data, it can be annoying for users to have to scroll up and down to find the
information they are looking for. Collapsible sections can be a good solution to
this problem. Collapsible section are also a good way of grouping information
together.

4.6.1 Creating a collapsible section
To create a collapsible section within a form, follow these steps:

1. Open the design of a form.

2. Select the text you want to have inside the section:

a. Choose Create > Section -> Standard if you want the section to be seen
by all users that have access to the document.

b. Alternatively, choose Create -> Section -> Controlled Access if you want
to restrict access of the section to certain users defined in a formula.

Figure 4-34 shows the InfoBox for a standard section.

Figure 4-34 The properties for a Section

3. The Title tab allows you to give a name to the section. You can also use
formulas to name sections. Other properties that can be changed here are the
border type and color.

4. The Expand/Collapse tab enables you to define expand and collapse rules
when the document is previewed, opened for reading, opened for editing, or
printed.

5. The Font tab enables you to set the text type and color.

6. The Hide properties of a section apply to the section header only. The
contents of the section may have different hide properties. However, it’s not
possible to manually open a section when the header is hidden. If the section
is closed and the header is hidden, the contents are effectively hidden.
132 Domino Designer 6: A Developer’s Handbook

4.7 Using tables
Tables are used for positioning and aligning elements on a page or form. With
Domino 6, you can include fields, graphics, buttons, subforms, hotspots, objects,
sections, nested tables, attachments, Java Applets, and embedded elements
inside a Domino table.

For basic information about tables and how to create them, see the document
“Creating tables” in the Lotus Notes 6 Help database.

4.7.1 Creating tables within tables
Domino 6 supports nested tables (up to four levels deep). This is useful for
developing tabbed tables both for Notes client users and for Web sites when you
want to be sure that fields and graphics are aligned correctly.

To create a nested table, follow these steps:

1. Select the table and position the cursor within the cell where you want to
create a nested table.

2. Choose Create -> Table.
3. Specify the number of rows in the Rows field.
4. Specify the number of columns in the Columns field.

The nested table is then created inside the table; refer to Figure 4-35 on
page 134.
 Chapter 4. Domino Design elements: forms 133

Figure 4-35 A nested table

To use this nested table on the Web, highlight the whole table and choose Text ->
Pass Thru HTML. This causes Domino to translate the whole table into HTML,
so that the nested table will be displayed correctly on the Web.

4.7.2 Merging and splitting cells
Table cells can also be merged into one cell. The following example
demonstrates how to create a table of four cells and then merge two of them into
one:

1. Create a blank form by selecting Create -> Design -> Form from the Domino
Designer 6 client.

2. Create a table with two rows and two columns.
3. Highlight the two leftmost cells.
4. Choose Table -> Merge Cells.

Note: When you are using tables on the Web, you must insert information in
all the cells (even if it is only a dot); otherwise, the empty cells will not be
displayed.
134 Domino Designer 6: A Developer’s Handbook

You can see that these two cells are now merged into one cell, as shown in
Figure 4-36.

Figure 4-36 An example of merged cells

Let’s preview the same form on the Web; refer to Figure 4-37.

Figure 4-37 The merged cells viewed in Internet Explorer 6.0

5. To split the cells, click the merged cell and choose Table -> Split Cells.

Restriction: You can only split a merged cell. You cannot start with a
one-row, two-column table and split the right cell into two rows.
 Chapter 4. Domino Design elements: forms 135

4.7.3 Table properties
There are seven available tab options where you can modify tables, as described
in the following sections.

Table Layout tab
The Table Layout tab is shown in Figure 4-38.

Figure 4-38 The Table Layout tab

1. The Width option allows you to specify how the table appears to the user.
There are three different ways to show the table:

– Fit to window: The table uses the same width definitions as the current
window.

– Fit with margins: The table size changes when the user changes the
window size. Fit with margins shows all the table cells at the same time so
users don’t have to use the horizontal scroll bar.

– Fixed: The designer can manually determine the size of the table. The
table width does not change if the user changes the window size.

2. If Fixed is selected, then you can select the table’s alignment. Options are left,
center, and right of the window.

Notes:

All of these options are supported on the Web.

The cell width can never be reduced to less than the widest element in that
column.
136 Domino Designer 6: A Developer’s Handbook

3. Cell width: allows you to set the width of the cell. You may find it helpful to set
the table to “Fixed” temporarily, so that you can type column widths without
the table adjusting all columns to fit.

4. The Space Between Columns and Space Between Rows options allow you to
specify the distance between the cells or rows.

Cell Border tab
The Cell Border tab is shown in Figure 4-39.

Figure 4-39 The Cell Border tab

� Cell Border Style allows you to select the style of the cell borders. Available
options are Solid, Ridge, and Groove. Web browsers support only Ridge style
or no borders.

� Color allows you to select the color of the border lines for the whole table. Not
supported on the Web.

� The thickness of the borders can be set from 0 to 10. You can set all the
borders of selected cells to 0 (= no border) or to 1 by clicking one of the
buttons at the bottom of the screen. If you have selected more than one cell,
you can outline them by clicking the button at the bottom right of the section.

The Notes client lets you individually adjust the thickness of each cell wall.
However, HTML lets you specify one border thickness that is used for the
entire table.

Table/Cell Background tab
The Table/Cell Background tab is shown in Figure 4-40 on page 138.

Note: For the Web, there are only two options for borders: on or off. This is
determined by the borders of the top left cell.
 Chapter 4. Domino Design elements: forms 137

Figure 4-40 The Table/Cell Background tab

1. In the Colors tab, you can choose the background color of the cell. To have
the same background color for the whole table, click Apply to All.

2. The Table Style option allows you to select different types of styles for the
table. The style, in this case, refers to the pattern used to color in table cells
with one or two colors you select. The available options are:

– None
– Solid
– Alternating rows
– Alternating columns
– Left and top
– Left
– Right and top
– Right
– Top

Figure 4-41 on page 139 shows an example for table style — Left and Top.
138 Domino Designer 6: A Developer’s Handbook

Figure 4-41 An example of the Left and Top style

The Style options give you the opportunity to use a particular color effect in
the cells; refer to Figure 4-42 on page 140.
 Chapter 4. Domino Design elements: forms 139

Figure 4-42 Applying a gradient cell fill

To apply the gradient cell fill shown in Figure 4-42, follow these steps:

1. Highlight the cells you want to change (in this case, rows 2 through 4 in
column 1).

2. Choose the background color for the cells.
3. Select the gradient color.
4. For the direction option, choose left to right.

Table Border tab
The Table Border tab allows you to specify the width and style of the table border;
refer to Figure 4-43 on page 141.

Note: The Gradient cell option is not supported on the Web.

As shown in the diagram at the bottom of the properties dialog, cell color
setting override table color settings.
140 Domino Designer 6: A Developer’s Handbook

Figure 4-43 The Table Border tab

The Drop Shadow option shows a shadow around the table.

Margins tab
The Margins tab enables you to specify the left and right margins for the table.
This is the distance the outside edge of the table is intended to be from the edges
of the page. You can use either the percent sign (%) or inches. The Margins tab
is shown in Figure 4-44.

Figure 4-44 The Table Margins tab

The R4 Spacing option converts the whole table into the R4 form. (It is unlikely
you will want to use this; it is provided for compatibility with Notes version 4
applications.)

Table Rows tab
The Table Rows tab allows you to change the table display style between
standard, tabbed, and other styles.

Note: The Drop Shadow option is not supported on the Web.

Note: The Margins option is not supported on the Web.
 Chapter 4. Domino Design elements: forms 141

Figure 4-45 The Table Rows tab

Select the Show only one row at a time option. You can use many different
kinds of features.

Figure 4-45 on page 142 shows a small table that we will use to demonstrate
how the collapsible features work.

Note: Some collapsible features do not work on the Web.
142 Domino Designer 6: A Developer’s Handbook

Figure 4-46 The table example to demonstrate collapsible features

Figure 4-46 shows the table that we set up in order to demonstrate the different
table display options that we have available.

� There is one large table, which contains five rows and two columns.

� In the second cell of each of the first four rows there is a nested table.

– The first and second nested tables each contain two rows and two
columns.

– The third nested table contains three rows and two columns.
– The final nested table in the fourth row contains one row and two columns.

Table 4-6 on page 144 shows further examples of these features. (Note that all
table rows in the main table are displayed to users such that they only see one
row at a time.)
 Chapter 4. Domino Design elements: forms 143

Table 4-6 Which row to display examples

Option Description

Users pick rows via tabs.

Note: You can type the Tab
label and caption, as well as
set the Font properties for the
label and caption.

User picks rows via captions.

Note: You can type the Tab
label and caption, as well as
set the Font properties for the
label and caption.

Switch rows every
(n)milliseconds — Advance on
Click.

Note: You also have the option
of using one of eight effects to
display the rows.

This option allows you to display a single row from the main table that
the user can cycle through to the next by clicking the table with the
mouse.

Switch rows every
(n)milliseconds — Once when
opened.

Note: You also have the option
of using one of eight effects to
display the rows

Domino runs (displays the rows one after another) the table once when
the form is loaded. Interval option is allowed.

Switch rows every
(n)milliseconds — Cycle once
on Click.

Note: You also have the option
of using one of eight effects to
display the rows

This is similar to the Once when opened option, but is activated when
the user clicks the first row.
144 Domino Designer 6: A Developer’s Handbook

Table Programming tab
The Table Programming tab gives you an opportunity to specify options for your
table; refer to Figure 4-47. Available options are Name/ID, Class, Style, and Title.
Apart from the Name/ID field, which is used in controlling the table
programmatically, HTML options only take effect on the Web.

Figure 4-47 The Table Programming tab

Switch rows every
(n)milliseconds — Continually.

Note: You also have the option
of using one of eight effects to
display the rows.

This is similar to the Once when opened option, but cycles through each
row in the table continuously.

Switch rows programatically. Allows you to display a single row based on the value stored in special
field $table-name where table-name is the value that you give your table
in the Programming tab of the Table in Name/ID field (for example
MyTable; see Figure 4-17 on page 102).

The value required in this field is the name of the tab or the row number
(field must be a number type and rows start from zero) you need to have
displayed.

Note: This tab is similar to the generic HTML properties, but the table and the
selected cell each have their own properties.
 Chapter 4. Domino Design elements: forms 145

4.8 Actions
Actions are used to provide a user interface for users. By clicking a button or
selecting an action from the Actions menu, Notes client users can perform
certain tasks. An Actions menu is not available for Web users, but button-type
actions are.

Actions help you automate tasks in an application. This can speed up repetitive
tasks like routing documents, updating document information, performing
calculations, checking for errors or basically nearly anything that can be done
using LotusScript or @formulas. Users click a button, hotspot, or pick from the
Action menu to execute the action.

Examples of typical actions:

� Changing the document to edit mode
� Create a new document
� Create a response document
� Saving a document
� Changing a value of a computed field on a form
� Forwarding a document

Actions can both be shared and unshared. (Normally, we don’t use the term
“unshared” actions; we just speak of these as “Actions”.)

You can create an unshared action in a view, folder, form, page, or subform to
provide one-click shortcuts for routine tasks in a view or document. Actions
become part of a design element's design and are not stored with individual
documents.

You can also create a shared action in a database that can be used in multiple
views, folders, pages, forms, and subforms. Shared actions are stored as shared
resources in the database. If you make changes to a shared action, then all
forms, views, pages or subforms that use this shared action will automatically be
updated with the new/changed code.

Important: As mentioned, Web users do not have an Actions menu, nor can
they use many of the shortcuts. Therefore, it is essential that you provide them
with the ability to perform the necessary tasks by providing them with action
buttons.

Tip: You should to provide basic functionality for users with buttons, even
though some of the functionality could be achieved through other means (such
as using a menu action or shortcuts), because buttons provide a more
user-friendly user interface.
146 Domino Designer 6: A Developer’s Handbook

To build an action, you can use any of the following:

� Simple actions that you select from a list

� Formulas

� LotusScript

� JavaScript

� Common JavaScript

When you work with forms, views, pages or subforms, then the way to add,
change, or view your actions is the same. If you open one of these design
elements, you can view your actions by dragging the right-most corner in the
Designer 6 client to the left, as shown in Figure 4-48.

Figure 4-48 Displaying the actions

Another way to view the action bar is by using the path View -> Action Pane, as
shown in Figure 4-49.

Figure 4-49 Displaying actions using the menu

4.8.1 Creating an action
To create an action, right-click in the action pane and select Create Action, as
shown in Figure 4-50 on page 148.
 Chapter 4. Domino Design elements: forms 147

Figure 4-50 Creating an action

You can create an unshared action by using the path Create -> Action ->
Action.

4.8.2 Removing an action
To delete an unshared action, mark the action in the action pane and press the
Delete key. Confirm the deletion by responding yes when you are asked whether
you want to delete the action from the database.

4.8.3 Action properties
Use the different tabs in the action’s properties box to set:

� The name of the action

This is the name of the action, which is shown on the button for the end user.
If “label” is used, “label” is used as the visual name of the button for the end
user.

� The label of the action

To create more user-friendly actions, labels can be set on actions. This is a
new feature of Domino 6. A label can programmatically be set to evaluate the
visual name/text on the button based on different values, such as @username
or values in fields on the document.

� The target frame of the action

This is used to set the target frame where the action should be performed.

� Type of action

In Domino 6, we have both “Button” and “Checkbox” as action types. The
default is “Button”. For more information about the Checkbox type of action,
refer to 12.12.4, “Checkbox action” on page 439.

Note: Checkbox-type actions are not supported on the Web. They behave
like regular actions.
148 Domino Designer 6: A Developer’s Handbook

� How the action should display

There are various settings for how this action should display and be
accessible. You can decide whether the action should be available through
the Actions menu, or if it should be included in the Action bar.

� Add a icon to the action

Each action, besides those of type “checkbox”, can have a icon associated
with it. This to give a more visual interface of what exactly will happen when
clicking the action.

� Deciding hide/when rules to the action

Actions can be hidden based on different rules. For example, you can hide an
action called “Edit Document” if the user did not have the role “Modifier” by
adding a hide/when formula as follows:

@IsNotMember(“[Modifier]” ; @UserRoles)

� Settings considering NotesFlow Publishing

To access an action’s propertybox, right-click the action and select Action
Properties. You can also access this propertybox using keyboard shortcuts. All
propertyboxes can be displayed using Alt + Enter, so marking the action and
clicking this key combination will show the propertybox.

4.8.4 Action bar properties
As well as the Action itself, there is also a properties box for the Action bar. The
Action bar is the bar where the actions are shown. One way of accessing these
settings is by first accessing the action properties box, and then selecting Action
Bar from the Actions properties box dropdown list, as shown in Figure 4-51 on
page 150.
 Chapter 4. Domino Design elements: forms 149

Figure 4-51 Selecting the Action Bar properties box

The Action Bar properties box is shown in Figure 4-52.

Figure 4-52 Action Bar properties box

By setting and changing the settings in the Action Bar properties box, you can
fully control changing the design of the background of the bar, the text font, size
and color of the text on the buttons, the buttons styles, border styles, and much
more. This helps you to create a more user-friendly user interface.

4.9 Embedded elements
Using Domino Designer 6, you can insert navigators, views, outlines, calendar
controls, scheduling controls, folder panes, file upload controls and editors.
These elements are called embedded elements, and they provide an easy way to
enter and show information in both the Notes client and Web browsers.
150 Domino Designer 6: A Developer’s Handbook

The Notes client cannot use Embedded Folder Panes or Embedded File Upload
Controls; only Web users can. Web users cannot use Date Picker.

4.9.1 Embedded editors
This is a new feature that comes in Domino Designer 6. You can now embed an
editor into a form. This functions like an IFRAME on a Web page.

There are mainly two situations in which you would use this new feature:

� Embedding one or more forms into an existing form

� Embedding an editor which again links to an embedded view

For more information about this feature, refer to 12.17, “Embedded element
enhancements” on page 469.

4.9.2 Embedded navigators
An embedded navigator is an element that provides you with an easy way to
show a Notes navigator. You can have multiple navigators in one form. To insert
an embedded navigator into your form, follow these steps:

1. From Domino Designer 6, open the MyTeamRoom database.

2. Choose the Forms design view and create a new form by pressing the New
-> Form button in the Form view pane.

3. Create a table containing one row and two columns.

4. Go to the first cell in the table and choose Create -> Embedded Element ->
Navigator and choose TeamRoom navigator in the dialog box.

5. The TeamRoom navigator is now inserted into the table, and you can see in
the Programmer’s Pane that the TeamRoom navigator is highlighted.

6. Try to change the embedded navigator by choosing another navigator in the
Programmer’s Pane to see what happens. As you will see, the navigator
changes in your design pane when you select another navigator.

7. You can also embed a navigator based on a formula.

Note: You can also use these embedded elements in any page and they will
work as they do in a form.

Note: This type of application can also be done with a frameset design
element, where the view is in one frame and the selected document in another
frame.
 Chapter 4. Domino Design elements: forms 151

4.9.3 Embedded date picker
An embedded date picker is an element which shows the calendar view of the
current month (default) and allows the user to browse other months.

Usually you would use a embedded date picker in a frameset and set the target
frame of the embedded date picker to a frame containing a calendar view.
Clicking a date in a date picker would result the calendar view to change to that
date.

This feature is not supported on the Web.

4.9.4 Embedded outline control
You can insert an embedded outline control in your form to give more flexibility to
your programming of the navigation pane than navigators provide. Navigators
appear essentially as static image maps. If you need more flexible and
programmable navigation, Outline control can be a good option. For more
information on this, read the document “Embedding an outline” in the Domino
Designer 6 Help database, and refer to 9.3, “Embedded Outline” on page 309.

4.9.5 Embedded view
An embedded view is an element that provides you with an easy way to show a
Domino view for Notes or Web users inside a page or a form. For example, the
Expand and Collapse options work fine, and it is not necessary for browsers to
reload the site repeatedly, which can be slow. With Domino 6, you can insert
more than one view in a form, subform, or page.

To create a new embedded view, follow these steps:

1. Go to an empty area of a form (for example, Team Member Profile Form) and
choose Create -> Embedded Element -> View.

2. A dialog box is displayed. Choose By Category and then OK.

3. The embedded view is inserted into the table and you can see a list of views
in the Programmer’s Pane.

4. By clicking with the right mouse button and selecting Embedded View, you
can display the Embedded Views InfoBox, as shown in Figure 4-53 on
page 153.
152 Domino Designer 6: A Developer’s Handbook

Figure 4-53 The Embedded View properties

– The Basic tab allows you to specify whether you want to use the view Java
applet when looking at this form through a browser, and if not, lets you
override the default number of lines to display as configured in the Domino
server configuration. It also has the option for you to specify the target of
your view when clicked once or when it encounters a double click.You
select which frame to open the view in. This is a new option in Domino
Designer 6.

– You can choose the color of the background and the size of the view in the
Elements tab.

– The Fonts tab of the InfoBox lets you specify fonts and colors for the
Embedded View.

– The Alignment tab lets you specify the alignment of the view.

– The Page Break tab allows you to control the pagination of the view.

– The Hide When tab allows you to set when to display and hide the view.

4.9.6 Embedded group scheduling control
The group scheduling control is similar to the one found in the mail template, and
allows you to view the diaries/schedules of multiple people at the same time.

4.9.7 Embedded folder pane
An embedded folder pane is an element that provides you with an easy way to
display a list of Notes views on the Web. You can have only one embedded folder
pane within one form.

Tip: The view Java applet is not accessible for users with screen readers. We
suggest you provide an alternate text-only page.
 Chapter 4. Domino Design elements: forms 153

1. Open the form that you created earlier and delete the embedded navigator
element.

2. In the same place, choose Create -> Embedded Element -> Folder Pane.
After embedding the folder pane element form, the layout will look as shown
in Figure 4-54.

Figure 4-54 An embedded folder pane

You can view the form in your Web browser by opening the database from the
Web and typing the following address in the location field:

http://"server name"/"database name"/"Form Name"?openForm

where server name is the name of your server, database name is the
database name, and Form Name is the name of the form that you want to
open.
154 Domino Designer 6: A Developer’s Handbook

Figure 4-55 The embedded folder pane in a Web browser

You can also change the font, font size, color of the text, and alignment of the
folder pane by opening the InfoBox.

3. Close the form and return to the standard navigator.

4.9.8 Embedded file upload control
A file upload control is an element that provides users with an easy way to upload
file attachments to the Web. You can have multiple file upload control elements in
one form.

4.10 Other features of forms
This section describes some of the features you can use in forms.
 Chapter 4. Domino Design elements: forms 155

4.10.1 Horizontal rules
To create a horizontal rule, do the following:

1. From the standard navigator choose Design -> Forms. A list of forms is
displayed.

2. Open the Main Topic form.
3. Click the form where you want to create a horizontal rule.
4. Choose Create -> Horizontal Rule.
5. A horizontal rule is created on the form. You can change the settings of the

horizontal rule from the Infobox.
6. By default, the rule is set to fit to window. You can set the height and color,

and either fit the width to the window or specify a width.

Note: Domino displays the horizontal rule for Web applications using the HR tag.

4.10.2 Computed text
Computed text can be used to create text, on the form or in a rich text-type field
on a document, based on Notes @formulas. Creating computed text is similar to
creating text fields that are computed for display.

Computed text is not stored in the document, and it is computed every time the
document is opened, reloaded or refreshed.

Authors who do not have designer privileges can create personalized Web pages
using computed text. To create computed text in an existing field, do the
following:

1. From the Notes client, open the TeamRoom database and create a new
document by choosing Create -> Main Document.

2. Go to the Content field.
3. Choose Create -> Computed Text.
4. Computed Text is created on the field.
156 Domino Designer 6: A Developer’s Handbook

Figure 4-56 Example of using @Text(@Now) as computed text

5. When Computed Text is highlighted, click the Programmer’s Pane and type
the desired formula. In this case, the formula is:

@Text(@Now)

The formula returns the current date stamp.

Note: This is useful if you are not a designer but you want to add some
functionality to the document. You can, for example, also use computed text to
show something to one user that other users will not see.

The following formula allows only Paul Revere to see the text; other users will not
see it:

Name([CN]; @UserName) = "Paul Revere"; "Hello Paul, This text is shown only
for you, other users don't see it";"");

Tip: If desired, you can type HTML into Computed Text.

Note: The computed text formula must return a single text value, not a
number, date or a list. This means you cannot use formulas like @Now,
@Sum or @UserRoles, without converting the return value to text first.

Figure 4-56 on page 157 shows the example we used for computed text. In
this example, we used @Text function to convert the value @Now formula
return to a text string.
 Chapter 4. Domino Design elements: forms 157

4.10.3 Buttons, Action bar buttons, and hotspots
Note menus are not available to Web users. Therefore, you must provide
alternatives to perform these functions. Use actions in all your views and forms,
or buttons and hotspots on forms.

To create multiple buttons that are displayed in a Web browser, perform the
following steps:

1. The browser must support JavaScript.

2. Select the database property Web Access: Use JavaScript When
Generating Pages. If this property is not set, Domino recognizes only the first
button in a document and treats it, by default, as a Submit button that closes
and saves the document. If there are no buttons in the form, Domino places a
Submit button at the bottom of the form.

Guidelines for using button formulas
Notice the following guidelines and restrictions:

� On the Web Action bar, buttons and hotspots support only a subset of the
available actions.

� You should create only one Submit button per form. You can customize this
button, even if you haven’t selected the database property Web Access: Use
JavaScript when generating pages.

� Formulas on buttons are run when the user clicks the button.

Tip: If your browser doesn’t support JavaScript and you don’t want any
buttons on the form, then enter the following HTML code on the bottom of the
form: </form>. Remember to mark text as Pass-Thru HTML and hide it from
Notes users.

Actions
Action Drop-down menu
The application developer can create a drop-down menu on an action bar. The
following example creates an action button with three sub-actions:

1. From the menu, select Create -> Action -> Action with Sub Action.

2. When the Actions properties box is shown, type in the name of the first
sub-action.

3. To add further sub-actions, select Create -> Action -> Action while the
top-level action is selected.

Tip: To add more top level actions you may need to press “-” to collapse
the list.
158 Domino Designer 6: A Developer’s Handbook

4. Remember to name the parent action by selecting it and then clicking n the
Properties icon.

When all the action buttons are created, save the document and preview the
form by choosing Design -> Preview in Notes. The action bar and the action
button should look as shown in Figure 4-57.

Figure 4-57 A form with sub-actions

As you can see, the drop-down menu opens when you click the Help button.

Note: Using Domino Designer 6, you can add more than one sub-level to a
drop-down menu.

Action bar InfoBox
The Action bar InfoBox allows you to modify the properties of the Action bar. The
Action bar InfoBox looks as shown in Figure 4-58.

To open the dialog, double-click an action to open the Action Infobox and pull
down the list in the title bar.

Figure 4-58 The Action bar properties
 Chapter 4. Domino Design elements: forms 159

The Action bar InfoBox consists of six tabs:

1. Action Bar Info

On this tab you can specify:

– The alignment of the buttons.
– Whether to use HTML or the Java applet when viewing this page via a

browser.

2. Action Bar Size

Select one or more of the following:

– Bar height - choose one of the following:
• Default - automatically determines the appropriate height for the action

bar.
• Exs - specify the size of the action bar in exs. An ex is equal to the size

of the lower case of the font that you have chosen.
• Fixed - specify an absolute bar height in pixels.

– Font, Size, and Style - if you selected Exs, specify the font, the size of the
font, and the style of the font (for example, bold or italic) for the items in the
Action Bar.

This setting does not affect the text on the action buttons, only the height
of an “Ex” for purposes of determining the button height.

3. Action Bar Background

This allows you to change the following:

– Color - specify a color for the background of the action bar.
– Image - you can also choose to use an image for the background. To use

an image, click the folder icon and select the name of a shared image
resource that you have created and stored in the database as a Resource,
or click @ and specify a formula (or set of formulas).

– Options - lets you choose how to present the background image. For
example, you can center it, tile it, repeat the image vertically, and so on.

4. Action Bar Border

This contains the settings for the bar’s border

– Border style and color - choose the style and color of the action bar border.
For example, you can choose a solid line border or a border with a ridge or
no border at all.

– Border effects - lets you choose to have a drop shadow border and set its
width in pixels.

– You can also set the thickness of the border (as well as the thickness of
the outside and inside border, if applicable).
160 Domino Designer 6: A Developer’s Handbook

5. Button Properties

This tab allows you to modify the properties of buttons.

– Button Size - lets you set the height, the width, and the margin for all the
buttons on the action bar. If you choose Fixed size, you can specify the
size in pixels.
• If you choose default for the height, for the width, or for the margin, its

size is automatically set. Note that if you have images that are much
taller than the font, you should not choose a default height, but should
specify a fixed height.

– Button Options:
• Display border - controls when the button border displays. You can

choose to display the button border On Mouse Over, Always, or Never.
• Align text - choose whether to have button text aligned center, left, or

right.
• Internal margins - set the margins within the button in pixels.
• Always show drop-down - checking this causes the drop-down

character (down caret) to display inside the Action button. If this is not
checked, the drop-down character displays only on mouse over.

– Button Background - lets you either select a color for the button
background or use an image for the background. To use an image, click
the folder icon and select the name of a shared image resource that you
have created and stored in the database as a Resource, or click @ and
specify a formula (or set of formulas).
• Note that using an image is not supported on the Web.

6. Button Font

This tab allows you to modify the font size and text style on the of the buttons.
This controls the actual button font. The font size and style on the action bar
size tab is only used for determining the button height.

4.11 Images within forms
There are several ways to add images to your Web pages:

� Copy images through clipboard
� Import pictures
� By using Image Resource

Note: It is possible to create Shared Actions in a database that can be used in
multiple views, folders, pages, forms, and subforms. Shared actions are
stored as shared resources in the database.
 Chapter 4. Domino Design elements: forms 161

4.11.1 Copying images
1. Copy your desired image to the clipboard.
2. Open the form in Design mode.
3. Click the form where you want to place the image.
4. Choose Edit -> Paste.

Figure 4-59 Example of a form with an image pasted into it

4.11.2 Importing pictures
1. Open the form in Design mode.
2. Click the form where you want to place the image.
3. Choose Create -> Picture.
4. Select the type of file, click the file to import and click OK.

4.11.3 Using Image Resource
Attaching your image files as image resources into your database is the
recommended way of storing and using the images you want to use in your
application. Images are stored in a central place inside the application, and they

Tip: Often the quality of the image is better when the picture is imported rather
than pasted.
162 Domino Designer 6: A Developer’s Handbook

can be replicated together with the application. Note that you can use images
from databases other than the current databases. This means you could have a
central repository for your image resources, thus allowing you to mange your
images in a single place.

1. Create a new image resource by opening the Shared Resources -> Images
view.

2. Click the New Image Resource button, select the type of image file, and then
click the file to import. Click OK.

3. Go to the form and move the cursor to the place where you want to place the
image resource.

4. Choose Create -> Image Resource and select the image for Insert Image
Resource box. You can also choose images from other databases. If you do,
the other database needs to be available to users who use that form.

Figure 4-60 The Insert Image Resource dialog box

4.11.4 Alternate text
Adding alternate text to graphical hotspots allows Web users with text-only Web
browsers to see text on the form where the graphic should be. Users with Web
browsers that support graphics will see the alternate text while the Web browser
is loading the graphic. Screen reader programs speak this text for the benefits of
those who cannot see the image.

Note: Image Resource also supports animated images.
 Chapter 4. Domino Design elements: forms 163

To add alternate text:

1. Select the graphic and choose Picture -> Properties.
2. In the Alternate Text box, enter the text to describe the graphic.

4.12 Using CGI variables
Common Gateway Interface (CGI) is a standard for interfacing external
applications with HTTP servers. When a Web user saves a document or opens
an existing document, the Domino Web server uses CGI variables to collect
information about the user, including the user’s name, the browser, and the user’s
Internet Protocol (IP) address.

To capture this information in a Web application, you have two options:

� Create fields with the same names as CGI variables.

� Use LotusScript agents.

4.12.1 Table of CGI variables supported by Domino
Table 4-7 lists all the Common Gateway Interface (CGI) variables that are
supported by Domino.

Domino captures the following CGI variables through a field or a LotusScript
agent. You can also capture any CGI variable preceded by HTTP or HTTPS. For
example, cookies are sent to the server by the browser as HTTP_Cookie.

Table 4-7 Table of CGI variables with new variables in bold

Tip: It is important to provide alternate text for all non-trivial images, especially
for the benefit of visually impaired.

However, do not add alternate text for spacers, bullets, or other elements that
only decorate and do not add information, as this just clutters the screen and
wastes the time of screen reader users.

CGI variable Returns

Auth_Type If the server supports user authentication and the
script is protected, this is the protocol-specific
authentication method used to validate the user.

Content_Type For queries that have attached information, such as
HTTP POST and PUT, this is the content type of the
data.
164 Domino Designer 6: A Developer’s Handbook

Content_Length The length of the specified content as given by the
client.

Gateway_Interface The version of the CGI spec with which the server
complies.

HTTP_Accept The MIME types that the client accepts, as specified by
HTTP headers.

HTTP_Accept_language The languages that the client accepts, as specified by
HTTP headers.

HTTP_Referer The URL of the page the user used to get here.

HTTPS Indicates if SSL mode is enabled for the server.

HTTPS_CLIENT_CERT_CO
MMON_NAME

The common name on the x.509 certificate.

HTTPS_CLIENT_CERT_ISS
UER_COMMON_NAME

The issuer of the x.509 certificate.

HTTPS_KEYSIZE The session key during an SSL session. For example,
40-bit, 128-bit.

HTTP_User_Agent The browser that the client is using to send the
request.

Path_Info The extra path information (from the server’s root
HMTL directory), as given by the client. In other words,
scripts can be accessed by their virtual path name,
followed by extra information that is sent as
PATH_INFO.

Path_Info_Decoded Returns the same as Path_Info, but decodes the string.
For example, if a URL references a view name that
contains characters that are not allowed a URL, the
name is encoded. This CGI variable decodes the
string. Path_Info_Decoded is available to Domino
applications only.

Path_Translated The server provides a translated version of
PATH_INFO, which takes the path and does any
virtual-to-physical mapping to it.

Query_String The information that follows the question mark (?) in
the URL that referenced this script.
 Chapter 4. Domino Design elements: forms 165

For more information about CGI, see:

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Query_String_Decoded Returns the same as Query_String, but decodes the
string. For example, if a URL references a view name
that contains characters that are not allowed in a URL,
the name is encoded. This CGI variable decodes that
string. Path_Info_Decoded is available to Domino
applications only.

Remote_Addr The IP address of the remote host making the request.

Remote_Host The name of the host making the request.

Remote_Ident This variable will be set to the remote user name
retrieved from the server. Use this variable only for
logging.

Remote_User Authentication method that returns the authenticated
user name.

Request_Content Supported only for agents. Contains the data sent with
an HTTP POST request. The data is usually
“URLencoded”, consisting of name=value pairs
concatenated by ampersands; for example,
FirstName=John&LastName=Doe.

Request_Method The method used to make the request. For HTTP, this
is “GET,” “HEAD,” “POST,” and so on.

Script_Name A virtual path to the script being executed, used for
self-referencing URLs.

Server_Name The server’s host name, DNS alias, or IP address as it
would appear in self-referencing URLs.

Server_Protocol The name and revision of the information protocol
accompanying this request.

Server_Port The port to which the request was sent.

Server_Software The name and version of the information server
software running the CGI program.

Server_URL_Gateway_
Interface

The version of the CGI spec with which the server
complies.
166 Domino Designer 6: A Developer’s Handbook

4.12.2 Using a field to capture CGI variables
When a field has the same name as a CGI variable, Domino copies the field
value from the CGI environment and places it in the field. There are two things to
note:

� You do not have to specify a formula if the field is editable.

� Make the field hidden when previewed for editing and opened for editing.

For example, you can create a field named HTTP_USER_AGENT. This field
captures information about which browser the user is using. You can use this
field to see if the user’s browser supports features in your application.

The general format of HTTP_USER_AGENT variable is software/version
library/version. The 11 leftmost characters basically tell you the browser version.
You can evaluate this in formulas and display different things based on that. For
example:

@Left(HTTP_USER_AGENT;11)="Mozilla 3.0";"Netscape Navigator";
@Left(HTTP_USER_AGENT;11)="MSIE 2.0";"Microsoft Internet Explorer";"")

Some of the values returned by HTTP_USER_AGENT are listed in Table 4-8.

Table 4-8 The returned values for some browsers, using HTTP_USER_AGENT

4.12.3 Using a LotusScript agent to capture CGI variables
You can use the DocumentContext property of the NotesSession class to capture
CGI variables. The property returns a Notes document that contains all CGI
variables that are applicable to the session. You can use these values to collect
or process information for the current session.

The following example demonstrates how to access CGI variables:

Dim session As New NotesSession
Dim doc As NotesDocument
Dim CGIValue As String
Set doc = session.DocumentContext
CGIValue = doc.HTTP_USER_AGENT(0)

Returned value Browser

MSIE Microsoft Internet Explorer 4 or later

Mozilla 3.x Netscape Navigator 3.x

Mozilla 4.x Netscape Navigator 4.x

Mozilla 5.x Netscape Navigator 6.x
 Chapter 4. Domino Design elements: forms 167

The CGIValue string now has information about a user’s browser.

Tip: When submitting a document, CGI variables are calculated twice: once
when the form is displayed to the user in the browser, and again when the submit
button is clicked and the form is posted back to the server.

There are occasions when you need to capture the state of a CGI variable when
the form is first displayed by the Web browser, for example, when using the
HTTP_Referer field to capture the URL the user has just come from so that you
can take them directly back to that point.

In this case, you need to create a second field on the form that computes the
value of the CGI variable: make the field hidden to the HTML form by using the
HTML tag’s <TYPE=HIDDEN>.

4.13 Profile documents
Profile forms are useful for collecting user-specific or database-specific values.
These values are stored in documents that are called profile documents. The
difference between documents and profile documents is the way they are
displayed and how items are accessed. Only one profile document per form can
exist for each user of a database. Or, only one profile document can exist for a
database, if that form is available to all users.

Profile documents allow for quick data retrieval, because they are cached while
the database that stores them is open. Profile documents are like other database
documents except they are somewhat invisible.

Users create profile documents through an action button or agent you design that
uses LotusScript or the formula language.

A database can have a single profile document or multiple profile documents that
match a key you specify—for example, an @UserName key that creates one
profile document for each user of a database, or a key that specifies a different
profile document for each day of the week.

Whether you use one profile document for a database, or use multiple profile
documents, depends on your design needs. Use multiple profile documents for
more customizable settings, such as user preferences. A user must have at least

Note: Profile documents do not display in views and are not included in a
document count for the database. This goes both for the database property
document count, and the count method for the LotusScript class,
NotesDocumentCollection.
168 Domino Designer 6: A Developer’s Handbook

ability to create documents in the access control list (ACL) of a database to
create a profile document that is available to all users.

You can use any form to create a profile document. After creating the form, you
create a button, action, or agent for the application that uses either
@Command([EditProfile]) in a formula or NotesUIWorkspace.EditProfile or
NotesDatabase.GetProfileDocument in a LotusScript program to create or
retrieve a document. In each case, Notes looks for a profile document with the
form name you specify, and creates a profile document if one does not already
exist.

4.13.1 Creating a profile form
Follow these steps to create a profile form for profile documents in your
database:

1. Create a form with fields to hold the values you want to store in profile
documents.

2. Choose Design -> Form Properties and deselect: Include in Menu.

3. Save the form.

4. Create a button, action, or agent that uses either the LotusScript
NotesDatabase.GetProfileDocument method or
NotesUIWorkspace.EditProfile, or the Formula language @Command
EditProfile to create or access the document.

4.13.2 Creating and retrieving profile documents using LotusScript
You can create and retrieve profile documents using the GetProfileDocument
method in the NotesDocument class. Example 4-1 on page 170 shows the use of
GetProfileDocument.

Note: The form should not be available for users in the “Create”-menu on the
client. This is to ensure that no one can create regular documents with the
form.

Tip: When using profile documents in Domino Web applications, the Domino
server process caches the profile. It does not notice changes made in the
Notes client or scheduled agents.
 Chapter 4. Domino Design elements: forms 169

Example 4-1 Creating a profile document using LotusScript

Dim session As New NotesSession
Dim db As NotesDatabase
Dim docProfile as NotesDocument

Set db = session.CurrentDatabase
Set docProfile = db.GetProfileDocument("Interest Profile", _
session.UserName)

The first parameter (“Interest profile”) is the “profilename”, which is a string. This
is the name or an alias of the profile document. The second parameter
(session.UserName) is optional, and should be the user name (key) attached to
the profile document. The return value of this example, docProfile, will return the
profile document created or retrieved that matches the given name.

You can create or edit a profile document using @Command([EditProfile]),
@Command([EditProfileDocument]) or @SetProfileField. Use the SetProfileField
and GetProfileField commands to set and retrieve field values from a profile
document. A SetProfileField command also creates a profile document if none
exists.

If you prefer scripts to formulas, use LotusScript routines to create and edit
profile documents. The EditProfile method of the NotesUIWorkspace class
produces the same result as the @Command([EditProfile]) command used in a
formula.

To set or retrieve field values for a profile document with a script, use the
GetProfileDocument method to get a handle to the document. You can then
retrieve values from the document or set new ones, just as you would with any
document.

Use the IsProfile property for the NotesDocument class to determine if a
NotesDocument object is a profile document. Use the NameOfProfile property to
retrieve the name of the profile document.

Example 4-2 on page 171 shows an example on how you can create, retrieve
and modify a profile document. If the profile document (docProfile) is not found, it
is created. It then checks for a value on this document (Company field). If this
field is not set, then it is updated, and saved with the new value. If it is already
set, nothing more is done.

Important: You cannot delete a profile document using an @command or
@function. Use LotusScript if you must delete a profile document.
170 Domino Designer 6: A Developer’s Handbook

Example 4-2 Creating/retrieving/modifying profile documents

Sub Initialize

Dim session As New NotesSession
Dim db As NotesDatabase
Dim docProfile As NotesDocument
Dim sAuthor As String
Dim itemCompany As NotesItem

Set db = session.CurrentDatabase
Set docProfile = db.GetProfileDocument("Profiles", session.UserName)
Set itemCompany = docProfile.GetFirstItem("Company")
If itemCompany Is Nothing Then

docProfile.Company = "ConCrea"
Call docProfile.save(True, False)

End If

End Sub

4.14 New features in Domino Designer 6
One of the new features is that you can create layers. Layers let you position
overlapping blocks of content on a page, form, or subform. Layers give you
design flexibility because you can control the placement, size, and content of
information. You can create and stack multiple layers beneath and above one
another. Transparent layers reveal layers underneath; opaque layers conceal
layers underneath.

Another feature is the ability to embed an editor into the form; this subject is
covered briefly in 4.9.1, “Embedded editors” on page 151.

Finally, the embedded scheduler allows you to design a form or subform that
displays the schedules of users. For example, you can create a form for users to
schedule department meetings. Embedding a scheduler on the form lets users
check everyone's schedules before planning the meeting time. Also, within the
embedded scheduler, users can click a person's name to open that person's
calendar view (provided the user has been given access in the person's mail
preferences). You can program the calendar to open in a separate frame, or in its
own window.

These features are explained in greater detail in Chapter 12, “New features in
Domino 6” on page 347.
 Chapter 4. Domino Design elements: forms 171

4.15 Summary
This chapter explained the main features and functions available to the
application developer when creating forms in a Notes application. It outlined
some of the areas that application developers need to consider when developing
applications for use by Notes clients, Web browsers, and mobile clients. New
features that are included in Domino Designer 6 were also highlighted.
172 Domino Designer 6: A Developer’s Handbook

Chapter 5. Domino Design elements:
pages

In this chapter, we describe the page design element. We explain the basics of
when and how to use pages in a database, and provides an example. We also
mention the new features that have been added in Domino Designer 6.

5

© Copyright IBM Corp. 2002. All rights reserved. 173

5.1 What is a page
A page in Domino Designer 6 is a design element that is used to display
information. Unlike a form that collects information, pages are designed to
present information to the user. For this reason, you cannot create any fields or
subforms on a page. However, you can have text, graphics, or an embedded
control (such as an outline) on a page.

Pages provide application developers with a greatly improved level of control over
the layout of Web pages on Domino sites. Application developers not familiar with
traditional Notes development, but with experience designing Web pages, now
have a WYSIWYG HTML authoring tool that provides support for a broad range
of browser technologies including HTML 4, image file formats, Java applets,
Active X components, and multimedia objects.

Pages are best used for static information, or as containers for other elements.
You might use a page as the opening screen of your application, or as the “thank
you” screen after a user submits a document (for more information about thank
you screens, see “The $$Return Field” on page 115), or as a “view template” to
provide the background and surrounding graphics in which a Notes view
appears.

5.2 Creating a new page
You can create a new page by choosing Create > Design -> Page or by clicking
the New Page button in the Design Page View pane; the new page is shown in
Figure 5-1 on page 175:
174 Domino Designer 6: A Developer’s Handbook

Figure 5-1 The page design view

Except for Fields, Layout Region, and Subforms, you can use anything on a page
that you could use on a form.

5.2.1 Specifying page properties
The Page InfoBox contains all of the information related to pages.

To look at the page properties, do the following:

1. Click the Properties icon.

Note: Remember to enter a window title for your page. If you don’t want the
title to evaluate based on a formula, static text needs quotes around it.

Using a window title is especially important for Web applications. Even if you
think the page will only be opened in a frameset, users can bookmark the
frame contents separately, and search engines can create direct links to it. In
that case, the window title becomes the text of the bookmark or the page title.
 Chapter 5. Domino Design elements: pages 175

2. In the InfoBox displayed, click the triangle in the top middle of the InfoBox and
select Page. An InfoBox is displayed which allows you to set the properties of
the page. There are four tabs:

– Page Info
– Background
– Launch
– Security

Page Info tab
The Page Info tab stores general information about the page. See “Using the
Form Info tab” on page 77 and “Using the Defaults tab” on page 83 for details
about the properties on this tab.

Figure 5-2 The properties for Page Info

For more information on the options you can set for a page and the Web Access
settings, refer to “Using the Form Info tab” on page 77.

Background tab
The Background tab allows you to specify the background color for the page. You
can also paste in a graphic using the clipboard or import a graphics file. These
settings are the same as for the form. See “Using the Background tab” on
page 87 for details about the properties on this tab.
176 Domino Designer 6: A Developer’s Handbook

Figure 5-3 The properties for Background

Launch tab
The Launch tab specifies what happens when the page is loading. See “Using
the Launch tab” on page 86 for details about the properties on this tab.

Figure 5-4 The properties for Launch

Tip: When developing for the Web, you might occasionally need the database
to launch directly to a form. This is not an option of the launch properties of a
database.

However, you can program a page with the use of meta tags and “HTML Head
Content” to redirect to a form. Setting a database to launch such a page will
then actually launch the form.
 Chapter 5. Domino Design elements: pages 177

Security tab
On this tab you specify whether this page is available to Public Access users.
Refer to “Using the Security tab” on page 91 for details about the properties on
this tab.

Figure 5-5 The properties for Security

Most security screens let you specify a list of users who have access to the
design element.

Note: This option is not available for pages, because they are unlikely to include
any secrets. If the page contains any information from other design elements, the
security of those design elements is still in effect. For instance, if a user does not
have access to a given view, the user will be unable to see the view contents by
looking at a page that includes that view as an embedded element.

5.3 Page events
Page events are just like form events, except that the NotesUIDocument object in
the script events contains no field items, and the events for saving and submitting
are not supported because there are no fields to submit. For more information
about events, see Chapter 4, “Domino Design elements: forms” on page 75.

5.4 Using pages
Pages can be used any time you are displaying information to the user. Pages
can contain:

� Layers
� Text
� Computed text
� Tables
� Graphics
� Applets
� Embedded objects such as views
� Links

Pages often work in conjunction with framesets to display graphics, site
navigation, or applets. They are also in previous versions of Domino (before
178 Domino Designer 6: A Developer’s Handbook

Domino 6), and are often used to hold JavaScripts and Cascading style sheets.
However, with Domino 6, it is recommended that you use Shared Resources and
Shared Code instead.

In the following example, we look at existing pages in the TeamRoom database to
see how the pages are used in that application, as follows:

1. Create a new database, using the TeamRoom template, and call it
MyTeamRoom.

2. Open this database in Design mode.

3. Go to the Pages design collections. The view pane shows all of the pages in
the database.

4. Open the TeamRoom Outline page by double-clicking it in the view pane. The
page should look like Figure 5-6.

Figure 5-6 The Team Outline page design view

5. To see what you can add to the page, click Create; refer to Figure 5-7 on
page 180.
 Chapter 5. Domino Design elements: pages 179

Figure 5-7 The Create menu for pages

5.4.1 Launching pages
There are many options for launching pages, such as the following:

� Inserting the page into a frameset

Select the frame where you want to put the page, and then click the right
mouse button and select Frame Properties. Select the Named Element in
Type option, and from the Kind options, select Page. You can also create
links to pages from outlines and hotspots, using a similar dialog.

Note: You can also select a page from another database.

� Using existing framesets

Open the Pages InfoBox and select the Launch tab. Select the Frameset
option and choose the framesets where you want to insert the page. Select
Frame options and select the page or form that you want to replace.

� Linking to the page via URL

In cases where you can’t use the Named Element selection to create a link to
your page, you can specify its location in Web applications by its URL.

The URL of a page is the URL for the database, followed by
“/pagename?OpenPage”; see the following example:

http://www.mycompany.com/main.nsf/Intro?OpenPage
180 Domino Designer 6: A Developer’s Handbook

� When database is opened

Open the database InfoBox and select the Launch tab. Choose Open
Designed Navigator in the On Database Open dialog list. Next, select the
page from the Type of Navigator dialog list and select the current page name
in the next field.

Note: In the On Web Open options, select the Use Notes Launch option if
you want to open that page for Web users as well as Notes client users.

5.5 New features in Domino Designer 6
With Domino Designer 6, you can select Style Sheets as a resource. Cascading
style sheets (CSS) gives you the ability to control many aspects of your page
layout, including headers, links, text, fonts, styles, color, and margins. You can
browse your local file system for a CSS, turn it into a shared resource, and then
insert it into a page, form, or subform.

Another feature is that you can create layers. Layers let you position overlapping
blocks of content on a page, form, or subform. Layers give you design flexibility
because you can control the placement, size, and content of information. You can
create and stack multiple layers beneath and above one another. Transparent
layers reveal layers underneath; opaque layers conceal layers underneath.

The third new feature for pages is the ability to insert an existing JavaScript
library into your page. A JavaScript library is a place for storing and sharing
common JavaScript programs and code.

These features are explained in greater detail in Chapter 12, “New features in
Domino 6” on page 347.

5.6 Summary
This chapter explained the main features and functions available to the
application developer when creating pages in a Notes application. It
differentiated between forms and pages. We described how to create a page and
what design elements are available to use in a page. We also examined some of
the new features that are available in Domino Designer 6.

Tip: If you need to write a formula to calculate the URL from elsewhere in
the same application, use the @WebBDbName macro function to avoid
hardcoding the database path.
 Chapter 5. Domino Design elements: pages 181

182 Domino Designer 6: A Developer’s Handbook

Chapter 6. Domino Design elements:
views, folders, and
navigators

In this chapter, we describe the view, folder and navigator design elements. We
explain how to create and modify them, and how to control the information that
they display.

6

© Copyright IBM Corp. 2002. All rights reserved. 183

6.1 Design elements defined
In the following sections we explain view, folders and navigator design elements.

6.1.1 What is a view
A view lists the documents stored in a Domino database and can be thought of
as a “table of contents” of a database. Each row listed in a view represents data
taken from a single document. Each column represents a field or a combination
of fields taken from that document; see Figure 6-1 on page 185.

All Domino databases have at least one view, but most of them have more. A
view can display all the documents in the database, or it can display a subset of
the documents. Documents can be viewed by categories, such as creation date
or author. Views can present documents sorted on different fields (for example,
sorted by topic or by creation data).

Every view has a view selection formula, which is a rule used to decide which
documents will be displayed in that view. The view might contain all documents in
the database, or only those that use a particular form, or only those created
within a month, or any other rule you set.
184 Domino Designer 6: A Developer’s Handbook

Figure 6-1 View sample

6.1.2 What is a folder
Folders enable you to store and manage related documents, without putting them
into a category. Folders are also convenient because you can drag documents to
them. A folder looks and behaves like a view.

The main difference between a folder and a view is that a folder does not have a
selection formula. It is up to the user to decide which documents are to be stored
in a folder. This can also done programmatically.

6.1.3 What is an outline
Outlines, like imagemaps and navigators, provide a way for users to navigate an
application. Unlike imagemaps or navigators, outlines let you maintain a
navigational structure in only one place. As your site or application changes, you
make only one change in the source outline. Each navigational structure that
uses that outline source is dynamically updated.

You can create an outline that lets users navigate to the views and folders in your
database, perform actions, or link to other elements or URLs outside of your
 Chapter 6. Domino Design elements: views, folders, and navigators 185

application. You can create an outline that navigates through your entire
application or site or through part of it.

6.1.4 What is a navigator
A database navigator is a graphical interface which allows the user to easily
access views, Domino data, or other applications. Navigators can include graphic
buttons or hotspots, which are programmed areas that a user clicks to execute an
action.

Navigators are supported for backward compatibility, but you should consider
using outlines or a combination of frameset and pages instead of navigators.
Both of them offer more rich functionality than a navigator.

Figure 6-2 shows a navigator.

Figure 6-2 Navigator sample
186 Domino Designer 6: A Developer’s Handbook

6.2 Creating views
There are several ways to create a new view. You can build a view from scratch,
or base it on an existing view in the same database.

Alternatively, if a useful view exists in a database other than the one you are
working in, you may want to copy this view over to your database and customize
it to your needs.

Creating a new view
To create a new view:

1. Open the database in Design mode and switch to the View pane.

2. Click the New View button. (You may also choose Create -> View from the
action bar.) The Create View dialog box is displayed; see Figure 6-3.

Figure 6-3 Creating a new view

3. Change the view name from Untitled to a meaningful name of your choice.
You also should provide a view alias at this time by entering the vertical bar
(|), followed by the alias name after the view name.

4. Select the view type from the pull-down list. The following options are
available:

– Shared
– Shared, contains documents not in any folder
– Shared, contains deleted documents
– Shared, private on first use
 Chapter 6. Domino Design elements: views, folders, and navigators 187

– Shared, desktop private on first use
– Private

5. Select where the new view should appear in the View Menu and folder
navigator. Selecting any position other than the top level will create a
cascaded view.

6. Click the Copy From button if you would like the view’s design copied from a
different view to the one displayed. This will bring up the Copy from dialog
box; see Figure 6-4.

Figure 6-4 Copy from dialog box

You can now select a different view design as the default for your new view.

7. Decide if you want to specify the view selection formula using the Search
Builder or the @function language.

Attention: Shared, Private-on-first-use views cannot be maintained by the
designer of a database.

Instead of using these, consider using an embedded view with the property
“Show single category” set on. See 6.7.6, “Embedding views” on page 230 for
more information.

Tip: You can also use the backslash character (\) to separate the levels to
create a cascaded view.

Note: If you are creating a shared view that contains only deleted
documents, or documents not in any folder, you cannot specify any
selection formula.
188 Domino Designer 6: A Developer’s Handbook

8. To use Search Builder, click the Add Condition button. This brings up the
Search Builder dialog box; see Figure 6-5 on page 189.

Figure 6-5 Search Builder

9. Build your selection criteria and click the OK button.

10.When using the @function language, the layout of the dialog box changes;
see Figure 6-6.

Figure 6-6 Creation view - Properties box

11.Click the Fields & Functions button if you want to see a list of all the fields
defined in the database and all the available @functions, along with their Help
documents.

Note: The layout and entry fields in this dialog box change, depending on
the condition you choose.
 Chapter 6. Domino Design elements: views, folders, and navigators 189

12.If you click the Save and Customize button, the Design window of the new
view is displayed so that you can start your customization immediately.
Otherwise, click the OK button.

Copying an existing view
You can copy an existing view in two ways: by using Copy and Paste, or Drag and
Drop.

To Copy and Paste:

1. Open the database in Designer, and switch to the Views design view.

2. In the View pane, select the view you want to copy.

3. Choose Edit -> Copy to copy the view to the clipboard.

4. Open the database in Design mode where you want the view to be copied.

5. Click the View pane, then choose Edit -> Paste to copy the contents of the
clipboard. This creates the new view.

6.2.1 Working with view properties
To display the View InfoBox:

1. Open the view in Design mode.

2. Click the Properties icon to display the InfoBox. It contains six tabs.

Info tab
� you must specify the name of the view. Including backslashes (\) in the name

will cascade the views in the View menu (for example: Marketing\Lotus
Domino).

Tip: You can double-click to copy the field names and @functions from this list
into the formula window.

Tip: Clicking the Formula Window button opens an formula input window,
where it is easier to enter more complex formulas.

Tip: Instead of choosing Edit -> Copy and Edit -> Paste from the Action bar,
you may want to use the keyboard shortcuts.
190 Domino Designer 6: A Developer’s Handbook

� Specify an alias. This is the name you will use in your code if you need to refer
to the view. The advantage of using an alias is that if the name of the view has
to be changed, you need not change your code each time the view name is
mentioned.

� Specify a comment. The comment entry field is optional, but useful for
maintenance purposes.

� Choose a style. You can display the documents in a view as a calendar
instead of a table. For example, a Calendar view can display a date, a
meeting or appointment time, a duration, and optional text describing the
entry.

To display a view as a calendar, the first column must be a Time/Date field.
For more information on creating a Calendar view, see 6.2.3, “Creating
Calendar views” on page 205.

Options tab
The Options tab is shown in Figure 6-7.

Figure 6-7 View Properties - Options tab

Note: If you set the name of the view to the reserved word ($All), Domino will
display this view with the name All Documents in the View menu.

With the exception of the reserved names, ($All), ($Inbox), ($Trash), and
($Sent), enclosing a view in parentheses means that the view is hidden and is
used solely for programming purposes. The user will not see it in the list of
views
 Chapter 6. Domino Design elements: views, folders, and navigators 191

� If you select Default when database is first opened, this view open the first
time. The setting has no effect unless database launch properties are set to
“Restore as last viewed”.

Figure 6-8 Default view mark

� If you select Default design for new folders and views, this view will be used
as the template when the user creates folders or adds new views to the
database.

� If you select Collapse all when database is first opened, the view will only
show the headings for categorized documents. This only applies when the
view is opened for the first time.

� If you select Show response documents in a hierarchy, the view will show all
response documents indented under their parent documents.

� If the Show in View menu check box is not selected, the view will be hidden
from the View menu in the action bar. It will still be shown in the folder
navigator.

� If you select Allow customizations, then users will be allowed to customize a
view in a variety of ways, including resizing and reordering columns.

Changes that users make are maintained when they close and reopen the
view. Because of this, designers will no longer have to “tweak” the view
design and either try to satisfy all users with one design, or create several
almost identical views with different sorting. Instead, the user can change the
order and the visibility of all view columns.

If you do not want users to customize a view, then do not select this option on
the Info tab.

Note: There can only be one view in a database having the attribute of being
the default view. In the View pane, such a view is marked with a dark blue
arrow

Note: The view selection formula still needs to select response documents.
192 Domino Designer 6: A Developer’s Handbook

Note: Deselecting this option does not disable the user menu option (View ->
Customize This View...) to customize the view. It does, however, disable all
the options within that dialog except for sorting; sorting is retained as an
available item for accessibility purposes.

Figure 6-9 shows the Customize View dialog box that is available to users
make their customizations, through the menu View -> Customize this View.

Figure 6-9 Customize View dialog box

� A view can have associated actions, and these actions can have some
show/hide formulas. When a view is opened, its action show/hide formulas
are evaluated.

There may be cases when you want an action to evaluate every time a
document changes in a particular view. For these cases, check the Evaluate
actions for every document change option. Be aware that checking this option
can have a serious impact on the performance of your application.

� If you select Creating new documents at view level, then users will be allowed
to create documents directly in the view context, without opening a form. To
make it work you must add some code in the InViewEdit view event, to handle
the document creation. You must use LotusScript for that; 12.13.7, “Create
document from view” on page 454 discusses how to implement this
functionality.
 Chapter 6. Domino Design elements: views, folders, and navigators 193

Figure 6-10 Creating document from view

� You may specify what happens when the view is opened. For example, you
can set the selection bar of the view to go to the bottom row.

� You may specify what happens when the documents are changed and the
view needs to be refreshed. Generally, you’ll want to display an indicator to let
users know that a view needs to be refreshed instead of refreshing
automatically (as this can have negative impact on the performance of your
server).

Tip: To keep your application accessible, make sure this is not the only way
to create documents.

Add some code here to
handle the document creation

View display

View Programmer’s pane
194 Domino Designer 6: A Developer’s Handbook

The Style tab
The Style tab is shown in Figure 6-11.

Figure 6-11 View Properties - Style Tab

Choose a background color for your view. If you also select an Alternate color,
rows will alternate between two colors.

You might instead select one of your Image resources and display that behind the
view text. The Repeat option lets you select whether the image will be displayed
once, tiled or stretched to fit the available space. Refer to 4.11.3, “Using Image
Resource” on page 162 for information about how to use Image resources.

Figure 6-12 shows a view with background image; let’s go into more detail on
this.

Figure 6-12 View with background image

� Specify a grid to enhance the view display; you can do so by selecting the
style and color.
 Chapter 6. Domino Design elements: views, folders, and navigators 195

� You can choose to have up to five lines of text for the column headings, so
that long column titles can wrap multiple files. In addition, you can specify
which style and color you can use for it.

� As far as rows are concerned, you can also have up to nine lines for each
document, to enable you to store a large description. If you select Check box
Shrink rows to content, this will eliminate all blank lines for documents that do
not require the extra space.

� The Don't show empty categories option suppresses the display of categories
with no documents. Select this option if there are documents with a Reader
field which may hide these documents from the user at runtime.

If that is the case and there is no document to be displayed for a specific
category, the category will also not be displayed to the user.(Without this
option checked on, part of the content might be compromised despite use of
reader fields.) Refer to 6.7.4, “Using categories in views” on page 228 for
more information.

Use this option if you want to hide the existence of the categories from users
who do not have access to the documents in it.

� The Colorize view icons option colors the pre-defined Domino view icons to
match the header color.

� Color options let you set colors and style for unread documents and for
column totals. Red is used in applications that are shipped with Domino for
unread documents.

� You can set other options, such as Show/Hide the selection margin, margin
border (a line between the margin and the view), and extend last column to
window width.

� A new feature in Designer is view margins. You can set it in pixels (1 to 100.)
and choose the appropriate color. This draws a rectangular border around the
whole view.

Note: Selecting the Don’t show empty categories option is likely to have a
negative impact on your Domino server.

Tip: If you allow users access to create views on the server, they can still
see the category values by creating a view that shows categories.

Note: Extend last column will only make the column wider, never narrower.
It is generally good idea to use this option if the column is left-aligned.
196 Domino Designer 6: A Developer’s Handbook

Refer to Figure 6-10 on page 194 to see how some of these options are used.

The Launch tab
You can set a specific Frameset and Frame that must be used to display the view;
see Figure 6-13. Note that this feature for views and folders works only on the
Web. Refer to “Using the Launch tab” on page 86 for more information about
Launch options.

Figure 6-13 View Properties - Launch tab

The Advanced tab
The Advanced tab provides information on the following topics:

� The index used to build the view; when it should be refreshed and discarded,
and Restrict initial index build to designer or manage.

Note: A view index is similar to an index in a relational database. It
remembers what documents are in the view and how they are sorted. This
saves time when opening the view, since Domino must only look at
documents that were modified since the last time the view was opened, to
add or remove them from the index.

This is not the same as a full-text index that supports keyword searching.

These advanced options are not often used. The default view indexing
behavior is best for most applications.
 Chapter 6. Domino Design elements: views, folders, and navigators 197

Figure 6-14 View Properties - Advanced tab

� How users will be notified about documents that were added or modified
since they last opened the view; refer to 6.7.3, “Identifying unread documents”
on page 227 for more information.

� Whether unique keys are built in the view for ODBC.

� How this view is displayed when viewed with a Web browser (whether in
HTML format or like an Java applet), and if the view documents can be
selected.

Note: The difference between HTML format and Java applet is that with Java
applet, the Web application interface is very similar to a Lotus Notes client.
Whereas with HTML, you have the flexibility of the HTML language to format
the view the way you wish.

� Include view updates in the transaction log; this is a new feature in release 6.

Transaction logging captures all the changes made to a database and writes
them to a transaction log. The logged transactions are then written to a
dedicated disk in sequential order to be committed into the Domino database
later. Transaction logs can then be used for backups and backup recovery, to
recover from a media failure or system crash.

Attention: The view applet is not accessible for screen reader users, so
you should provide an HTML alternative.
198 Domino Designer 6: A Developer’s Handbook

By including view updates in the transaction log, you can avoid most of the
view rebuilds. This can save a significant amount of time after a server restart.
However, including view updates in the transaction logging can seriously
impact your server’s performance. View logging should be turned on only for
complex system views such as $Users view in the Domino Directory.

For more information about Transaction Logging, see Lotus Domino
Administrator 6 Help.

The Security tab
In the following example, the view can be used by all users that have access to
the database. If you want to restrict its use to only some users or groups of users,
deselect the check box and add the users or groups that will be granted specific
access.

Figure 6-15 View Properties - Security Tab

You may also select the Available to Public Access Users option if you wish to
enable this view or folder for users with public access read or write privileges in
the access control list for this database.

3. Close the InfoBox.

Attention: Consult your Domino server administrator before turning this
option on for any view.
 Chapter 6. Domino Design elements: views, folders, and navigators 199

6.2.2 Editing View columns
We’ll now take a closer look at column properties. To view the column properties
of a view, open the view in Design mode; you’ll see a window similar to
Figure 6-16.

Figure 6-16 A view in design mode

To access the properties of a column, double-click the column heading, or select
the column heading and click the Properties icon. The InfoBox will be displayed.
200 Domino Designer 6: A Developer’s Handbook

The Column Info tab

Figure 6-17 Column properties

On the Column Info tab, you can specify the following:

� The title of the column to be shown in the column heading

� The width of the column

� If this column is related to a multi-value field, how this field will be displayed

� If the user is allowed to resize the column

� Whether or not the specification of this column is for response documents

� If icons should be displayed in the column

If this box is checked, the width of the column should be 1. Furthermore, the
Programmer’s Pane must contain a formula which evaluates to a whole
number. For example, the following formula determines whether a document
has an attachment and, if so, displays the attachment icon (number 5):

@If(@Attachments;5;0)

Use 0 to leave the column blank. The formula above returns 0 when the
document has no attachments, so nothing is displayed. A table of all icons
and their associated numbers is available in the Help database for
information.

Note: You cannot add any icons to the predefined set.

Note: The width is shown in “characters”. You can adjust the width more
precisely by dragging the edge with the mouse.
 Chapter 6. Domino Design elements: views, folders, and navigators 201

With Domino 6, you can also add customized icons as part of you column, by
typing the name of the image resource as the value of the column. Refer to
12.13, “View enhancements” on page 445 for more information.

Example:

@If(Status = “Overdue”;”Highlight_Animated.gif;Status=”Done”;82;0)

� If this column content can be edited in the view.

If you select this option, you must write LotusScript code to control the editing.
Refer to Chapter 12, “New features in Domino 6” on page 347 for more
information about setting up view editing.

� Select the Use value as color option if the column content should be displayed
as color.

This feature allows you to programmatically apply an RGB color to column
text. To see an example of this, refer to 12.13, “View enhancements” on
page 445. When this option is checked, “User definable” is available to allow
users to specify colors. This requires an entry in the “Profile document” field,
where you should type the name of the profile document. For more
information about Profile Documents, refer to 4.13, “Profile documents” on
page 168.

� If a twistie will be shown if the row is expandable.

A twistie is shown in front of the category in a categorized view, indicating to
users that they can open and close the category. A twistie (a blue triangular
icon) is the image shown by default, but you are able to change the image to
any of the image resources in your database. The image can be chosen
directly from the Image Resource dialog box or based on formula.

A twistie is also shown in a row that may has response documents
hierarchically.

Note: For the benefit of screen reader users, avoid providing information
only by means of a view icon.

Note: Since a twistie must have an “Open” and “Closed” appearance, your
images must be a “image well” with two images in it. Make sure the images
you use describe an “Open” state and a “Close” state in some sense.
202 Domino Designer 6: A Developer’s Handbook

The Sorting tab

Figure 6-18 Sorting a view

On this tab, you can specify whether or not the documents displayed in the view
should be sorted based on the values in this column, and if so, what the rules are
for sorting. You do this by making the following selections:

� Select None, Ascending, or Descending as the sorting rule.

� Specify Standard or Categorized as the sorting type.

� Specify sorting rules for case and accent sensitivity.

� Choose options for multiple values and categories.

If selected, then the Show multiple values as separate entries option tells
Notes to display the same entry multiple times in the view, if the field
displayed in this column contains multiple values.

� The Categorized is flat option is greyed out unless the view is categorized. If
selected, the category heading and the first document in the category are
combined into a single row. This saves screen space.

� Select if you want the user to be able to alter the sort order by clicking the
column heading.

� Select a value from the Totals pull-down menu if you would like to display
some statistics in the view. You can, for example, summarize values in a
column, show averages, or show percentage info.

Tip: Using the Click on column header to sort option allows the user to
specify a secondary sort column, as well.
 Chapter 6. Domino Design elements: views, folders, and navigators 203

The Font and Style tab
� The Font tab lets you set the font and color used when displaying information

in this column.

� Use the Number tab to specify the display format of numbers in this column.

� Use the Time tab if you are going to display date/time values in this column.

� The Title tab allows you to set the font and color of the column title.

The Advanced tab

Figure 6-19 Advanced settings

On the Advanced tab, you can specify the following:

� The name of the column for programmatic use

You can also use this name to refer to the column in other columns of the
same view.

If you specify the column to show a field, the name of the field will be used for
this value, by default. If you specify a formula or a simple formula, a numeric
value, preceded by a dollar sign ($), will be used for the Name of the column.

You are able to change the Name of the column to whatever you want.
However, be cautious if you change the name, because if you have referred to
the programmatic name of the column in your code, changing the name will
break the code.

If you change the programmatic name of the column and then change the
type of what is shown in the column, for example from field to formula, the
name will be overwritten.
204 Domino Designer 6: A Developer’s Handbook

Designer will not check if the same name was used more than for a column.

You will need the programmatic name for the column to program the
InViewEdit event that allows users to edit documents from the view.

� The conditions to hide the column.

A check box is available to hide the column in any condition. You can also
specify other conditions using an @function.

� Use the Advanced tab to force the values in this column to be used as
document links when this view is displayed in a Web browser.

6.2.3 Creating Calendar views
There are rules that you must follow in order to create a Calendar view. You start
the creation like any other view described, but on the View Info tab of the InfoBox
you specify Calendar as the style. This tells Domino to display the documents in
this view using the Calendar Outline.

Defining columns
You must define the first two columns as described here in order for the view to
function properly:

� The first column must be sorted and has to contain a Time/Date value or a list
of Time/Date values. Also, make sure that the Show Multiple Values as
Separate Entries option is selected in the Sorting tab of the InfoBox for this
column. This causes documents containing a Time/Date value list to be
displayed on more than one day in the calendar which you can use, for
example, for repetitive events.

The column may contain dates only, or dates with times, or a mix of the two.

Make this column hidden.

� The value for the second column must evaluate to a duration in minutes, for
example (EndDateTime - StartDateTime)/60. If the duration is not relevant for
your view, or for the documents being displayed, set the value to zero.

Make this column hidden.

Note: The hide a column in any condition feature has been relocated to the
Advanced tab (in previous releases, it was located at the Column Info tab).

Note: Column headers are not displayed in Calendar views.
 Chapter 6. Domino Design elements: views, folders, and navigators 205

Customizing the View layout
Use the Style tab of the View InfoBox to fine-tune your settings. For more
information about specifying View style, refer to 6.7.2, “Overview of styles” on
page 224.

Figure 6-20 View Properties - Calendar Style tab

For Calendar views, there are extra options in the Style tab to cover all the
calendar features. If you select Show conflict marks, a vertical line is displayed in
front of entries for appointments which are scheduled for the same time.
Furthermore, you might not want to show the selection column in order to save
space. The selection column will be shown automatically if there are selected
documents in the Calendar view.

Use the Time/Date tab, shown in Figure 6-21 on page 207, to specify the defaults
for time slots.

Note: A document marked for deletion will appear with the strike-through
mark.
206 Domino Designer 6: A Developer’s Handbook

Figure 6-21 Time/Date tab

A time slot display lists the time of day, along the left edge of the cell, with
intervals you specify here. In this example, 8 AM, 9 AM...through 6 PM are
displayed for each day. Appointments that occur at a particular time are displayed
in the appropriate position.

You may want to build your own columns for displaying the start and end time of
appointments.

Enhancing the functionality of a Calendar view
To allow the user to easily add entries in the Calendar view, consider associating
the following LotusScript samples with your view. They allow users to add an
appointment by double-clicking in the Date/Time area.

Tip: If you do add start and end time columns, include the entire start date and
time, but use time formatting options of the column to display only hours and
minutes. This allows Notes to adjust for the user’s local time zone.

If you do not do it this way, users in different time zones may see the same
time displayed (for example, they might all see “10:00 AM”) even though the
event is not at 10:00 AM in their time zone.

Note: The example assumes that the variables ws and ClickedDate are
already declared. You must change the commands parameters for your
application requirements.
 Chapter 6. Domino Design elements: views, folders, and navigators 207

1. Add the following to the Regiondoubleclick event of the view:

Set ws = New NotesUIWorkspace
If source.CalendarDateTime<>"" Then
 Call ws.ComposeDocument("", "", "Appointment")
End If

This code detects when the user double-clicks in a calendar cell and creates
an “Appointment” document (if you do not want to use the name
“Appointment”, substitute another name).

You could also add code to this event to fill in a field or fields on the new
document with the date and time the user clicked on, or you could do it on the
form itself, as described in the next step.

2. Add this LotusScript code to the QueryOpen event of the Appointment form:

Set ws = New NotesUIWorkspace
ClickedDate = ws.CurrentCalendarDateTime
ws.CurrentDocument.Document.ReplaceItemValue(“StartDateTime”, ClickedDate)

ClickedDate is a global variable that is used to set the start date of the new
appointment as default.

6.2.4 View summary
Following is a checklist of the most important things to consider when creating a
view.

Checking View design
� Is there a default view for the database?

� Is there a view that is displayed by date?

If not, you may want to add one.

� Do all views appear correctly on the View menu? Are the appropriate
keyboard shortcuts used? Do the views appear in the correct order?

If not, verify the names and the Show in view menu selection in the View
InfoBox.

Tip: You may consider numbering your views to arrange the views in the
order you like them to be. This also helps Helpdesk members to identify the
view when receiving a telephone call from a user.
208 Domino Designer 6: A Developer’s Handbook

� Is the information in the view easy to read?

If the view appears cluttered or the columns are too close together, reset the
column width and alignment.

� Are all the documents that should be in the view displayed, or are too many
documents displayed?

If the view is not displaying the correct documents, check the view selection
formula.

� Are response documents indented?

If they are not and you want to indent responses, select Show response
documents in a hierarchy on the Options tab of the View InfoBox, and
create a column for responses.

� If the view is used for programming purposes, make sure that it is a hidden
view.

� Check workstation compatibility. Are all fonts used in this view available (or
approximated) on all workstations? Are column widths sufficient for all
workstations, or too wide for some?

� If needed, does the view have a read access list?

To create a read access list, select the Security tab in the View InfoBox.

� Keep the view simple, especially if it is designed for Web access. Removing
unused columns will provide ease of use and improve performance.

Checking columns
� Is the information in each column correct?

If not, verify the formulas in the column definitions.

� Is each column displaying all the information that is contained in it?

If not, you may need to adjust the column width and/or the font used to display
the column, or set the view properties to allow multiple lines per row, so it will
wrap.

� Are the contents of columns aligned properly?

For example, numbers should be right-aligned; text should be left-aligned or
centered. Verify the alignment for each column.

� Are documents in the right order?

If not, make sure that you sort on the correct columns, and that you choose
the correct sort order (ascending or descending).

If the document sort is out of order, check that the column formula returns a
value of the type it appears to be, for example that number columns have
number values, not text.
 Chapter 6. Domino Design elements: views, folders, and navigators 209

6.3 Shared views and private views
Views can be either shared views (that is, available to many users), or personal
views (that is, used by one person). You designate the view type when you create
it, and you cannot change it later.

6.3.1 Shared views
Shared views are available to any user with at least Reader access to the
database. Most views that you design for databases are shared views. Only
users with Designer or Manager access can create shared views. Users with
editor access can create personal views or folders, when the database manager
has selected Create personal Folders/Views for them in the access control list.

6.3.2 Shared, Personal-on-first-use views
Shared, Personal-on-first-use views are a convenient way to distribute
customized personal views to multiple users. You usually create this type of view
by using @UserName to customize the display for each user.

After a user creates a Shared-to-personal view, the user’s copy of the view no
longer inherits design changes. For example, if the developer adds a column to
the view, anyone already using a personal version of the view will not see the
new column. To obtain design changes, users must delete their personal
versions of the view and open the Shared-to-personal view again.

Shared-to-personal views are stored in the database as long as they are shared.
After the first use, Domino uses the Create Personal Folders/Views option to
determine where to store the view.

If you want the shared-to-private view to be stored in a user's desktop.dsk file
rather than in the database, choose Shared, desktop private on first use as
the View Type when you create the view.

Note: Shared-to-personal views are not a security measure, because they do
not protect data. If you create a Shared-to-personal view that omits certain
documents, a user can still create a personal view that includes them.

Tip: Embedded “Show single category” views can often be used instead of
Shared, Personal-on-first-use views. They are more efficient and easier to
maintain. See 6.7.6, “Embedding views” on page 230 for more details about
embedded views.
210 Domino Designer 6: A Developer’s Handbook

6.3.3 Personal views
Users can create personal views to organize documents in personalized ways by
choosing Create > View.

If a user has rights to create personal views/folders in the access control list,
personal views are stored in the database. If the user does not have the access
control list right to create personal views/folders, then personal views are stored
in the user’s personal workspace file.

Private views are not supported on the Web.

6.4 Creating a button on the Action bar
You can create an Action bar in views and folders, as well as in forms. In general,
the actions should do one of the following:

� Affect several documents or all the documents displayed in the view. You
could store all documents created by your manager in a Manager folder, for
example.

� Represent the actions that the user will perform most often (such as: save
document, edit document, exit from some screen, and so on).

There are three types for an Action: Button, Checkbox, and Menu separator. For
more information about these types, refer to 12.12, “Actions enhancements” on
page 438.

As in forms, you must make sure that the actions you create will fit in the Action
bar, and you must also consider the screen resolution available to your users.

Creating a Document Link using an Action button
As an example, we are going to develop an action that creates a Document Link
between two documents. The documents do not have a child-parent relationship.

To create a button in the Action bar:

1. Open the design of the ($All) view in your TeamRoom database.

2. Choose Create -> Action. The InfoBox for the Action properties is opened
and you now have access to the Programmer’s Pane. Fill in the Information
tab as shown in Figure 6-22 on page 212.
 Chapter 6. Domino Design elements: views, folders, and navigators 211

Figure 6-22 Create doclink view action in Designer

3. Put the following @function statements into the Programmer’s Pane:

A doclink to the document selected from the view is copied to the clipboard:

@PostedCommand([EditMakeDocLink]);

The form Document is created:

@PostedCommand([Compose]; ""; "Document");

The macro goes to the field Body:

@PostedCommand([EditGotoField]; "Body");

It pastes the doclink into the RichText field:

@PostedCommand([EditPaste]);

It then positions the cursor back at the top entry field:

@PostedCommand([EditTop])
212 Domino Designer 6: A Developer’s Handbook

Testing the formula
To test the formula:

1. Select the All Documents view.

2. Click one of the documents to highlight it.

3. Click the Link Documents button on the Action bar. The document is opened
for creation, the doclink is pasted, and the cursor is positioned in the first entry
field.

4. Double-click the doclink to open the document that was selected in the view.

The results are shown in Figure 6-23.

Figure 6-23 The document is created; has doclink to other document

Properties of Actions and the Action bar
Actions and Action bars have properties that you can display by selecting the
action in the Action pane of the view or folder design window.

These properties are identical to the ones found in the Form Action bar.

6.5 Working with views as a developer
As an application developer, you may have additional requirements for a view in a
database than a regular user. Therefore, you will probably build “administrative”
views in order to be able to keep an eye on columns that are hidden to regular
users, for example, create an All Documents view, or a view showing replication

Tip: When you use a field name in a view action formula, it refers to that field
in the currently highlighted document. To get information from the highlighted
document in a LotusScript view action, use the CaretNoteID property of the
NotesUIView class to find out which document that is.
 Chapter 6. Domino Design elements: views, folders, and navigators 213

and save conflicts (using the $Conflicts field). These views are also a great help
for administrators when the database is used in the production environment.

While you are testing your application, you will probably need to inspect field
values that are hidden on the form. By using the following method, you can
inspect a form’s fields and their values without creating special views. To do so,
look at the properties of a document:

1. Select any one of the documents displayed.

2. Click the Properties icon.

3. Click the Fields tab to see the list of fields for that document, as well as their
values.

Figure 6-24 Document Properties

When files are attached to a document, a field called $FILE exists. Scroll down
the right listbox to see the file information. Here you can see the file name and
size and the platform on which it was created. There are also other keywords,
such as $Revision, $Links, $UpdatedBy, $Conflicts, and $Anonymous.

Tip: Users can see hidden views by holding Ctrl+Shift while selecting
View/GoTo, or holding down the Ctrl+Shift keys and double-clicking the
database icon. Hiding a view is not a security measure, but simply a design
option.

Note: As you can see, all the reserved fields start with a dollar sign ($). Notice
also that the data type of each field is shown; this is a good way to detect fields
that are supposed to be date/time or numeric values, but which actually
contain text values. It also lets you see whether a supposed Readers or
Authors field actually is being used for access control. Refer to the description
of the NotesItem class in the Lotus Domino Designer 6 Help for details.
214 Domino Designer 6: A Developer’s Handbook

The field replication mechanism allows for a faster transfer of information across
servers, or between the servers and workstations. An indicator is attached to
each field in all documents: Seq Num (or sequence number).

If you have a replica of a server database, compare the values of the sequence
number for fields of a replicated document. If their values are different, this
means that the field containing the lower value will be modified at the next
replication.

6.6 Views and the Web
Domino dynamically creates Web pages from the views in a database, including
URL links to the documents in the view. Using a Web browser, a user can
navigate, expand, and collapse the view in much the same way as they can from
a Notes client.

6.6.1 Using the default display
When a browser is used, the view is split into pages with 30 view rows per page.
This is to avoid having a view containing hundreds of documents presented as
one page with all the documents. Limiting the lines per page in this way improves
performance and makes navigation of the database more manageable.

When Domino generates the HTML page for a view, it maintains the column and
row format of standard Domino views. There are, however, a number of
differences that you need to be aware of and take into consideration when you
develop applications for the Web.

Tip: To detect often-modified fields, look for high sequence numbers. If
designing for peak performance, you may want to minimize the sizes of these
fields—or try to change them less often.

Note: The default of 30 view rows per page can be changed in the HTTP
section of your server document; this affects all the views of the databases on
that server. To modify this by view level, change this in the properties on an
embedded view.
 Chapter 6. Domino Design elements: views, folders, and navigators 215

Figure 6-25 shows an example of a categorized view as seen through a Web
browser.

Figure 6-25 Categorized view

Notice that there is no outline of available views on the left. Domino does not
include a view outline by default on Web pages. , Domino also ignores any menu
actions not supported on the Web.

Also note that there is no selection column unless you specify this in the view
option. To learn more about selection columns, refer to 6.7.2, “Overview of styles”
on page 224.

Tip: To improve Web performance (and performance on any other view for
that matter), avoid time-sensitive column formulas with @functions such as
@Now, @Created, @Modified, and so on.

Since the Domino Web server generates Web views as HTML pages on the
fly, time-sensitive formulas recalculate every time a Web user works in the
view (for example, when they open, scroll, or expand the view). Instead, create
a field in the form for that formula and refer to the field in your view.
216 Domino Designer 6: A Developer’s Handbook

As you can see, Domino has automatically created a Web navigation bar at the
top of the screen and, although not shown in Figure 6-25 on page 216, in the end
of the page. This navigation bar contains buttons that users click to Expand,
Collapse, Scroll, and Search the view.

On the Web, users open documents by clicking a document link column rather
than clicking anywhere in the row, as you do in the Notes client. The application
designer can specify which column(s) should include a URL link to the document.
By default, it is the first non-categorized column.

Domino displays the width of a column in a view as the length of the longest entry
in the column, regardless of what the column width is set to in the Column
InfoBox.

To avoid having long columns pushed to the right of the display, use the Style tab
in the View InfoBox and specify a number greater than 1 in the Lines Per Heading
setting. This causes the lines to wrap on the Web. If you specify 1, the lines will
not wrap. The same guidelines apply to column headings.

You also can use the Java applet option in the view properties. It allows you to
display a view in a more Domino-like outline. You activate this applet by selecting
the Use Applet in Browser option on the Advanced tab of the View InfoBox.

Tip: To force a column to be limited to a certain width when viewed from the
Web, use a column formula to retrieve the field value, for example:

@Left(FieldName;50)

This formula will set the widest width of the column to 50 characters.
 Chapter 6. Domino Design elements: views, folders, and navigators 217

Figure 6-26 Java applet for views, in a browser

A view served as an applet supports such “Notes-like” features as
expandable/collapsible categories, resizable columns, and multiple document
selection.

The view applet is programmable via the following @Commands:

@Command([ViewCollapse])
@Command([ViewExpand])
@Command([ViewRefreshFields])

6.6.2 Using HTML formatting for views
You can either add single HTML tags to the HTML view the Domino server sends
to the browser, or you can create all the HTML yourself and send it directly to the
browser without the server adding its own tags.

Note: The view applet is not accessible, so you should provide a “text only”
alternative for the benefit of screen reader users.
218 Domino Designer 6: A Developer’s Handbook

Enhancing the view display using HTML
You can also add HTML coding to the view in order to enhance the display on the
Web.

HTML embedded in views is a browser-only feature. If you embed HTML in a
view, the view is accessible by a Notes client, but the client interface will be
unattractive (because of the exposed HTML tags). Although you can see the
HTML tags from the Notes client, the features that the HTML coding provides
(such as linking) are not available to Notes clients.

In this case, you can use hide-when attributes for the column (to handle when the
user is accessing the application from a Notes client or a Web browser) and
display the appropriate layout.

Unlike forms and documents, there is no pass-thru HTML option in the design
interface. To write HTML in views, you need to include the HTML code in square
brackets ([]). Domino treats everything between the square brackets as
pass-thru HTML.

Following are examples of how you might want to use HTML in views, and in the
following section, we explain how to implement several of these examples.

� Insert a blank .GIF file between two columns in order to get a little more space
between the columns on the Web

� Add a horizontal ruler spanning the entire view for each document category

� Add a couple of icons and a URL link to the Home Page in the column
headers

� Include an HTML statement in the formula for a column to display a blinking
text string if it is a newly created document

� Include a URL in a few documents, and jump directly to the URL from the view

Treating the view contents as HTML
You can tell Domino to disregard all formatting and column alignment and just
send the text that is in the view columns. That text will have to include any
necessary HTML, since the server will not add any.

Note: Domino is actually looking for “[<“ to start the pass-thru and “>]” to end
it, but the < and > are part of the HTML.
 Chapter 6. Domino Design elements: views, folders, and navigators 219

In a Notes client, the view displays normally. On the Web, the view uses the
HTML formatting attributes that you specify in the column formula. You must
include HTML that defines all formatting and document linking for the view, as
follows:

1. Open the view in Design mode and choose Design -> View Properties.

2. Click the Advanced tab and select For Web Access: Treat view contents
as HTML.

3. Create a column.

4. In the design pane, click Formula and enter the HTML code in the edit
window.

Adding a space between columns
To add space between columns, follow these steps:

1. Create a new column between two columns, and set the column width to one
(1). Deselect the option Show values in this column as links (if not already
done).

2. Select Formula in the Programmer’s Pane and insert the following HTML
code, including the quotation marks (this is a text string):

"[]"

Note: The “ecblank.gif” icon comes with Domino. It is located in the icons
subdirectory on the Domino server.

Adding HTML and icons to column headers
You can use the column Title field in the column properties box to add graphics
and pass-thru HTML to your column headings. The only limitation is that you can
only fit 64 characters into the column title.

1. Open the InfoBox of a column for which the resorting property has been
turned on, and in the Title field, add the following line (no quotation marks):

Sort []

This will add a small green arrow to identify where to click to sort the column
on the Web. Browser users might not be familiar with the little triangle if they
are not familiar with the Notes client.

Important: Always use img tags with alt, height, and width parameters—the
alt tag is provided for the benefit of screen reader users, and specifying height
and width will prevent screens from “jumping” as they are loaded (when you
specify the height and width, the HTML page will have the correct space for
the image when it is loaded).
220 Domino Designer 6: A Developer’s Handbook

2. Open the InfoBox for any other column. In the Title field, enter the following:

[Home]

This will add an icon with a DocLink to the home page from the column
header.

Click the Title tab and select Right Alignment.

Adding HTML to column formulas
1. Select a categorized column. In the Programmer’s Pane, click the Formula

button and enter the following formula for the column:

Categories + "[<hr>]"

This will display the value of the Categories field and then add a horizontal
rule. Notice that the plus (+) sign is used to append values.

2. Add a column and enter the following formula:

@If(@Now>@Adjust(@Created;0;0;7;0;0;0);"";"[<blink><font
color=\"Red\"> New </blink>]")

The formula checks to see if the document was created within the last week
and if so, it will display a blinking “New” text string.

Creating URL links at view level
You can add HTML to the document fields displayed in the view columns in the
same way. By adding a URL address to a document, you can display URL links in
a view, enabling users to jump directly from the view level to a URL.

1. Create a new document and include the following in a field that will be
displayed in the view, such as the Document title:

[]IBM Corp.[]

2. Save your document and create a new one. Enter the following URL:

[]Lotus Developer Domain[]

Notes:

Using @Now in a column formula will degrade performance. Consider
using a schedule agent to flag new documents instead.

The HTML blink tag is not supported on all browsers.

Note: You could also calculate the HTML in the view, which is useful if you
want to use the same document, but different views, for Web browsers and
Notes clients.
 Chapter 6. Domino Design elements: views, folders, and navigators 221

3. Save your document.

Both documents take you directly to their respective Web sites.

Domino view properties not supported on the Web
Table 6-1 lists and explains view and folder features you should avoid using in a
Web application.

Table 6-1 Views and folders to avoid using in Web applications

Table 6-2 lists and explains column features you should avoid using in a Web
application.

Table 6-2 Column features to avoid using in Web applications

Views and folders Reason

Options properties This feature is not supported using HTML in a Web
browser.

Show in View menu Web applications do not have a View menu. To exclude
a view from the folders navigator, use the Design -
Design InfoBox to hide the view from Web users, or
surround the view name in parentheses, for example:
(HiddenView).

On Open: Go To… options This feature is not supported using HTML in a Web
browser.

On Refresh options This feature is not supported using HTML in a Web
browser.

Style properties
Unread rows
Alternate rows
Show selection margin
Beveled column headings

These features are not supported using HTML in a Web
browser.

Advanced properties
Refresh index options
Discard index options

These features are not supported using HTML in a Web
browser.
Views can be re-indexed at a Domino server.

Columns Reason

Column Info properties Most of the features on this tab are not supported
using HTML in a Web browser; for example, Title is
used on Web, as well as Show responses only,.

Show twistie when row is
expandable

Triangles are always shown.
222 Domino Designer 6: A Developer’s Handbook

6.7 Hints and tips on designing views
In this section we provide hints and tips that you may find useful when designing
or changing views.

6.7.1 Naming views
The name that you choose for a view is visible to Notes client users in the View
menu, to Web users in the Views list, and in the Folders pane (unless the view is
hidden). The name is case-sensitive and can be any combination of characters,
including letters, numbers, spaces, and punctuation. The full name, including all
alias names, can be up to 64 characters.

Naming tips
Views appear in alphabetical order in menus and lists. To force names to appear
in a different order, you should number or letter them. This also enables help
desk staff to easily identify a view.

When possible, assign a name that indicates how the view sorts documents (for
example, By Company Name or All by Category), or specifies which documents it
includes (for example, New Customers).

Use consistent names across databases to make it easier for users to recognize
views.

Alias names
An alias is an internal name for a view. Usually you use this alias for
programming purposes, for example, in @DbColumn formulas. Aliases follow the
same naming rules as view names.

You can append more than one alias name by entering the vertical bar (|)
symbol, followed by the alias name. Always keep the original alias as the
rightmost name.

View name | Alias1 | Alias2

Changing a view name
You can edit the view name in the View InfoBox when the view is open in Design
mode. If you have designed your view properly, used an alias, and referred to the
view by using only the alias name in your code, there is no need to retain the old
view name. However, if you have referred to the name of the view in your code,
then copy and paste the previous name into the Alias box to the left of any other
aliases, using the vertical bar (|) as the separator.
 Chapter 6. Domino Design elements: views, folders, and navigators 223

For example, suppose a movie database contains a view named By Screening
Date. The name of this view is going to be changed to By Premiere Date. Here is
how the name will look after it has been changed:

By Premiere Date | By Screening Date | DateView

Hidden views
When you surround a name with parentheses, for example (All), the view does
not appear to Notes client users in the Domino view menu, or to Web users or
Notes client users in the Folders pane.

Cascading views
To avoid overwhelming users with long lists, or if you have related views that
should be grouped together, you can arrange them in a hierarchy so that a group
of related menu items is organized under one item in the navigator pane. A user
clicks on the higher-level name to display the cascaded list.

If you do not want to specify a cascading view when you create the view, enter
the name you want to appear on the Create menu, followed by a backslash (\),
followed by the view name. For example, the Personal Address Book template
has two views related to servers:

Server\Certificates
Server\Connections

6.7.2 Overview of styles
Table 6-3 gives an overview of one of the most important view settings - view
styles.

Table 6-3 View styles

Tip: If you are unsure about whether you have used the view name in your
code, you can use the Design Synopsis tool to generate a report of all of your
design elements and search the report to see if such references exist. Then it
is easy to correct those references to refer to the alias name.

View styles Description Comments

Color: Body Determines the background color for
the view.

White, light blue, and yellow are
good choices.

Image: Body Determines the image used in the view
background.

Light images should be used.
224 Domino Designer 6: A Developer’s Handbook

Table 6-4 gives an overview of one of the most important view settings - row
styles.

Table 6-4 Row styles

Margins Displays margins in the view. Use “Color” to set a color for the
view margin. Useful for offsetting
a view with a contrasting
background color.

Collapse all when
database is first opened

Displays the top level category in
categorized views, or the main
documents in a hierarchical responses
view. Users click the category to see
individual documents within the
category.

Useful for large views with many
categories or topics. Not
applicable to Calendar views.

Row styles Description Comments

Lines per row (1-9) Determines how many lines a row can
contain.

“Shrink rows to content” and
“Color: Alternate rows” are useful
accompaniments to multi-line
rows.

Color: Unread rows Determines the color for unread
documents.

Red is used for unread documents
in template designs.

Color: Alternate rows Determines the color that alternates
with the background color to highlight
every other row.

Useful for multi-line rows. Not
applicable to Calendar views.

Color: Icons Determines if the column icons should
be colorized.

It colors the predefined Domino
view icons to match the header
color.

Show selection margin Shows the document selection margin.
Deselect for cleaner-looking rows.

If you deselect “Show selection
margin,” users can still select
documents by pressing and
holding Shift as they click
document names. The selection
margin appears temporarily while
documents are selected, and hides
again when all documents are
deselected.

Shrink rows to content Keeps gaps from appearing below rows
that are shorter than the number of
lines per row you select.
 Chapter 6. Domino Design elements: views, folders, and navigators 225

Table 6-3 gives an overview of one of the most important view settings - column
styles.

Table 6-5 Column styles

Row spacing (Single,
1-1/4, 1-1/2, 1-3/4,
Double)

Determines how much space there is
between rows.

More space makes each row
easier to read. Less space
condenses the view contents to
make them useful for reports or
Web users.

Show twistie when row is
expandable

Shows a green triangle or a image next
to a column that displays categories or
response documents.

Not applicable to Calendar views.

Extend last column to
window width

Fills out the last column to avoid empty
space in the view.

Column styles Description Comments

Column width Determines how many characters
fit in one row of a column.

(Optional) Select “Resizable” to allow
users to change the width as needed.
With the view in Design mode, you can
also click the column and drag the
column divider line to the width you want.

Text style and color:
Column title

Determines the font, size, color,
and alignment of an individual
column title at the top of the view.

Use the “Apply to All” button to change
the text style for all titles in the view.

Text style and color:
Column values

Determines the font, size, color,
and alignment of values that
display in this column.

Use the “Apply to All” button to change
the text style for all columns that display
text in the view.

Color content Determines the column content is
a color.

Supply RGB coordinates.

Hide column The column title and values do not
display to users. It depends on the
formula specified in the hide-when
formula in the column properties.

Useful for columns used for sorting that
contain values users don’t need to see.
This is not a security feature.

Multi-value separator For any documents that display
multiple values in the column,
separates each value with
punctuation or a new line.

Useful for making columns more
readable if they contain several values
(usually generated by a multi-value field).

Show column headings
(Beveled, Simple)

Shows a bar at the top of the view
with column titles with either a
beveled or flat look.

Beveled-background is gray.
Simple-background matches view color.
226 Domino Designer 6: A Developer’s Handbook

6.7.3 Identifying unread documents
To help users find new or modified documents, display the unread marks
(asterisks) next to unread documents in the view. A set of unread marks are
maintained for each user, so even if one person has read a particular document,
the asterisk still appears for other users who have not yet read that document.

Choosing a style for unread marks
These options are set as a Design property for a view. Open the Advanced tab of
the View InfoBox and select an “Unread marks” option. You can display unread
marks as:

� Standard (compute in hierarchy)

Displays asterisks for unread Main documents and Response documents,
and for any collapsed categories containing unread Main or Response
documents.

� Unread documents only

Displays asterisks only for unread Main or Response documents. Unread
marks do not appear next to collapsed categories. This choice displays the
view faster than the standard display, and is a good compromise between
showing unread marks at every level, and not showing them at all.

Choosing the option None omits unread marks. Users can still navigate to the
next unread document by using SmartIcons.

Choosing a color for unread marks
To change the color of unread documents in the view from the default color red,
click the Style tab and select another color for Unread rows. In Domino 6 there
are some new features that let you choose if you want display the unread row in a
bold format or transparent (for transparent, only an asterisk is displayed in the
selection margin; don’t change the row color setting).

Disabling unread marks for unread documents
If the unread status of modified documents is unimportant to users—or if the
database resides on a server that users don’t access directly—then turn off
unread tracking for all documents in a database to conserve disk processing
time. Click the Design tab of the Database InfoBox and select Do not mark

Lines per heading (1- 5) Determines how many lines a
column title can wrap.

Useful for long column titles or
instructions placed in a column title.

Color: Column totals Determines the color of the totals
for any columns that contain totals.
 Chapter 6. Domino Design elements: views, folders, and navigators 227

modified documents as unread. This setting affects all views in the database.
Users see only new documents as unread; modified documents do not appear as
unread.

Disabling unread marks entirely
The Advanced tab of the database properties provides the “Do not record unread
marks.” If you select this option, no documents will be marked as unread.

6.7.4 Using categories in views
A view that displays categories enables users to find related documents. A
categorized view is neat and easy to scan. Users can collapse the categories to
display only the category names and then expand categories individually, or
expand the whole view.

To categorize a view, create a column to display categories and then select the
option type Categorized on the Sorting tab of the column InfoBox. A categorized
column groups documents with matching values, and converts the value to a
category name. The column is usually one that appears on the left side of the
view. You may have multiple categorized columns in a view.

Setting the following options is recommended:

� Style the column text with a different color and in boldface to make categories
stand out.

� Select the Column Info property Show twisties when row is expandable, to
display a green triangle or an image that users click in order to see
categorized documents.

� Select the Options view property Collapse all when database is first opened,
to show only the category names when users open the view for the first time.

On subsequent occasions, a category may be open to highlight the current
document from the last time the view was opened.

Tip: Turning on this option saves space and makes your application faster.
Consider always using this option unless there is a real need to show the
unread marks.
228 Domino Designer 6: A Developer’s Handbook

6.7.5 Presenting views to users
Several options in the view and database InfoBoxes determine the initial display
of a view.

Opening to a particular row in a view
To highlight a particular row when a user opens the view, select one of the
following On Open options on the Options tab of the View InfoBox:

� Go to last opened document (the default choice)
� Go to top row
� Go to bottom row

If you want to jump to a specific document, you can write code in the view’s
PostOpen event.

Collapsing a view to show only categories
If you have a view that displays categories, you can show the view in collapsed
form every time users open it by selecting Collapse all when database is first
opened on the Options tab of the View InfoBox. You must also select Go to top or
Go to bottom row.

Displaying the last-used view
If you select Restore as last viewed by user (one of the On Database Open
choices on the Launch tab of the Database InfoBox), then Notes client users see
the default view the first time they open a database, and afterwards they see the
last view they opened. This option is not available for views opened by Web
browser users.

Tips:

If the column formula of a categorized column returns multiple values, the
document will appear multiple times in the view in each of the categories in
the multi-value list. Overuse of this feature can slow your application.

The backslash (\) symbol in a category name creates a subcategory; for
example, “Animals\Dogs” creates a top-level category Animals and a
subcategory Dogs.
 Chapter 6. Domino Design elements: views, folders, and navigators 229

6.7.6 Embedding views
Embedded views are the standard way to display a view to browser users. The
Domino server’s default of a view is rarely good enough for a professional
application. To redefine its appearance, you can create a form called
$$ViewTemplate for XXX, where XXX is the alias name of the view. This form will
be displayed when the view is opened from a Web browser, allowing you to add
custom controls, decorations, and so on. Refer to the Lotus Domino Designer 6
Help database for more details about view template forms.

To embed a view on a form or a page, do the following:

1. Open the form in Design mode.

2. Select Create -> Embedded Element -> View. The window shown in
Figure 6-27 is displayed.

Figure 6-27 Insert Embedded View window

Select a view from the list (you can also choose a view from other databases),
or select Choose a View based on formula (if you want to have a dynamic
selection).

3. Click OK and the view will appear on your form.

4. Click the Properties icon to bring up the InfoBox.
230 Domino Designer 6: A Developer’s Handbook

Figure 6-28 Embedded View properties

5. On the Information tab, when a user single-clicks a link in the embedded view
at run time, the link opens in the target frame specified next to the field: (for
single click). When the user double-clicks the same link at run time, the link
opens in the target frame specified next to the field: (for double click).

If you do not specify a frame, documents open in a new window in the Notes
client and in the same window for the Web applications. In addition, you can
specify how this view is displayed through a browser.

The Java applet always displays the whole view, with a scrollbar. If you do not
use the applet, you can select how many view rows will be shown per Web
page. User must click the next or previous page to display a new set for view
rows.

6. Click the Element tab; Figure 6-29 will be shown.

Notes:

The view applet is not accessible, so you should provide an HTML version
for browser users.

You can only change the line numbers to be displayed in the browser if you
select the option: Using HTML or the option: Using View’s display property.
 Chapter 6. Domino Design elements: views, folders, and navigators 231

Figure 6-29 Embedded View properties

– Use the Percentage selection to refine your selection. (Otherwise, provide
a width value for the view.)

– Specify the height of the view.

– Check the Disable scrollbars option, if it is not to be available to the user.

– Check the Show header option, to show column names for the view.

– Check the Selection tracks mouse movement option if you want to move a
selection box over documents as you mouse-over them.

Note: If this option is checked, then the Show selection margin option
cannot be checked. Also, this option is not available when a view is set to
allow users to edit document from the view.

– Check the Transparent background option, to overlay the view contents on
the page or form background.

– Check the Show entries as Web links option, to display each view entry as
a clickable link.

– Check the Show Action Bar option, to display the Action bar for the view.

– Check the Show selection margin, to add white space around the view.

Note: If this option is checked, then the Selection tracks mouse movement
option cannot be checked.

– Check the Show Only Current Thread option, to display the parent and
response documents associated with the current document. This is useful
in a threaded discussion database.
232 Domino Designer 6: A Developer’s Handbook

7. Use the Border, Paragraph Alignment, Paragraph Margins, and Paragraph
Hide When tabs as you would for any other design element.

8. Go to the Object Browser and select Embedded View -> Show Single
Category, and specify a selection formula. This allows you to display only one
category based on a formula; see Figure 6-30.

Figure 6-30 Embedded view in a form - programming the Show single category event

6.7.7 Formatting date and time columns
To format values that result in a time or date being displayed in a column, select a
style in the Date and Time format tab of the Column InfoBox. This is better than
using @Text in the view column formula to format the date. Refer to Table 6-6 on
page 234 for a list of the date and column options.

Notes:

You can embed more than one view in a page or a form.

Single category views are a good way to create personalized views for users.
Create a view categorized by the name of the user who “owns” the document
or who should see it, then use @Username in the Single category formula to
show only the current user’s documents.

Embedded view

Put here your code to specify
the single category

Form
 Chapter 6. Domino Design elements: views, folders, and navigators 233

Table 6-6 Date and column options

� You can use the operating system date/time settings, or you can customize it
for your convenience.

� Show “today” when appropriate show values resulting in the current date with
the word “Today”. Values resulting in the previous day display “Yesterday”;

Note: This information applies to columns whose formula displays a date-time
value (for example, @Created). Often applications contain dates stored in text
fields; Notes doesn’t recognize these as date values, so if you display them in
view columns, the setting on this tab do not apply.

It is undesirable to store date-time value in text format. Different computers
format dates differently, which could result in inconsistent values in your
database.

Option name Selections

On Display User setting
Custom

Display Date: Show All
Only month, day and year
Only weekday, month and day
Only month and year
Only month and day
Only year
Only month
Only day
Only weekday

Display Date:
Special

Show “today” when appropriate
Always show 4-digit year
Show 4-digit year for 21st century
Show year only if not this year

Display Date:
Calendar

Gregorian
Hijri

Display Time: Show All
Hours, minutes and seconds
Hours and minutes
Hours only

Display Time: Time
zone

Adjust time to local zone
Always show time zone
Show only if zone not local
234 Domino Designer 6: A Developer’s Handbook

otherwise, for the day after, it displays “Tomorrow“. All other values display the
date.

� If you have an international date format set in your operating system, these
choices change to suit the national convention (for example, from month/day
to day/mont).

� If you have an international time format set in your operating system, these
choices change (for example, from 02:30 to 14:30).

� You have three choices for time zone displays:

– “Adjust time to local zone” displays the time relative to the time zone of the
reader. A document created at 3:00 P.M. in New York that is read by a user
in Los Angeles adjusts to Pacific Standard Time; the creation time is
displayed as “12:00 PM.”

– “Always show time zone” displays the time zone where the document was,
for example, created. With this option, the creator’s time zone is always
shown. If a document is created in New York at 3:00 P.M., a user in Los
Angeles sees the creation time as “3:00 PM EST.” A user in New York also
sees the creation time as “3:00 PM EST.”

– “Show only if zone not local” displays the time zone where the document
was, for example, created only when the document is read by someone in
a different time zone. A document created in New York at 3:00 P.M.
displays to all users in the U.S. Eastern standard time zone as
“3:00 PM.” Users in all other time zones see the creation date as
“3:00 PM EST.”

6.7.8 Formatting numbers in columns
To format values that result in a number being displayed in the column, select a
style on the Number tab of the Column InfoBox. The following selections are
available:

� General

Formatting displays numbers as they are entered; zeroes to the right of the
decimal point are suppressed (for example, 6.00 displays as 6).

� Fixed

Formatting displays numbers with a fixed number of decimal places (for
example, 6 displays as 6.00).

� Scientific

Formatting displays numbers using exponential notation (for example, 10,000
displays as 1.00E+04).
 Chapter 6. Domino Design elements: views, folders, and navigators 235

� Currency

Formatting displays values with a currency symbol and two digits after the
decimal symbol (for example, $15.00). The currency symbol and thousands
separator that appear are based on settings in your operating system.

The following formatting options also apply:

� For any formatting type other than General, select a number from 1 to 15 from
the Decimal Places list.

� Select Percentage (value * 100)% to display values as percentages (for
example, to display .10 as 10%).

� Select Parentheses on Negative Numbers to display negative numbers
enclosed in parentheses (for example, (5) instead of -5).

� Select Punctuated at thousands to display large numbers with the thousands
separator (for example, 1,000 in English, or 1.000 in French).

6.7.9 Indenting Response documents
Indenting Response documents beneath Main documents is useful when
readers want to see the progression of a discussion. You can display 32 levels of
responses, with each level indented three spaces under its parent document.

Such a view requires that:

� Response forms are available to users with the types Response and
Response-to-Response.

� The Show Response documents in a hierarchy option is selected on the
Options tab of the View InfoBox, and the document selection formula uses
SELECT @All, or contains a formula that allows response documents to be
included, such as:

SELECT Form = “Action Item” | @AllDescendants

� The view has a responses-only column.

� The responses column is created immediately to the left of the column under
which responses are to be indented. Leave its title blank, make its width 1,
and select Show Responses only on the Information tab of the Column

Note: As with dates, these settings do not apply to text fields that contain
numeric values, only to Number fields.

Note: Even if you have no Response form, replication and save conflict
documents are responses to the original document.
236 Domino Designer 6: A Developer’s Handbook

InfoBox. Enter a column formula that displays information about the response
documents shown in the column, such as their authors or creation dates.

6.7.10 Sorting documents in views
Every view needs a sorting method that organizes documents in a way that
makes sense to users. For example, a By Date view sorts documents by their
creation dates, and a By Author view sorts documents by author names. To
achieve this effect, designate at least one column as a sorting column. You can
then define it as a user-sorted column, an auto-sorted column, or both.

Views that display categories often use sorting methods to sort the category
names into alphabetical order. If the sort column displays values from a
multiple-value list, select Show multiple values as separate entries to show each
value as a separate row. If you do not select this option, multiple values display
as one entry and are sorted by the first value.

Ascending and descending order
Columns sort documents in either ascending or descending order:

� Ascending order sorts in increasing order (1 precedes 2, A precedes B,
earlier dates precede later dates). For example, to display documents from
the oldest to the newest, create a Date column that uses the Creation Date as
its value and sorts documents in Ascending order.

� Descending order sorts in decreasing order (2 precedes 1, B precedes A,
later dates precede earlier dates). For example, to display documents from
the newest to the oldest, create a Date column that uses Creation Date as its
value and sorts documents in Descending order.

Auto-sorted columns
To set up a sorting style in advance, select the option Sort: Ascending or Sort:
Descending on the Sorting tab of the Column InfoBox. The sorting column is
usually the one that appears on the leftmost side of the view.

User-sorted columns
Users see a triangle next to a column title where values can be re-sorted. Users
click the column and choose a sorting method to see the documents in the order
that they choose.

Note: On a response document row, columns to the right of the “Responses
only” column are not displayed. The responses only column occupies the rest
of the line.
 Chapter 6. Domino Design elements: views, folders, and navigators 237

To set up a user-sorted column, select the Click column header option to sort
on the Sorting tab of the Column InfoBox. Next, select Ascending (or
Descending order), or select Both to allow users to cycle between ascending
sort order, descending sort order, and no sort order for the column.

Multiple sorting columns
To create multiple levels of sorting, designate more than one column as a sorting
column. For example, if a primary sorting column sorts entries by date, a
secondary sorting column might sort entries by author. Then all documents
created by one person on a particular date are grouped together.

Using an auto-sorted column as a secondary sorting column
To add a secondary sorting column, add a column to the right of the first sorting
column and then choose Sort: Ascending or Sort: Descending. Documents and
responses are sorted, then sub-sorted, in column order from left to right.

Designating a secondary sorting column for a user-sorted
column

User-sorted columns override the sorting built into auto-sorted primary and
secondary columns. If the view has a user-sorted column and you want to
include secondary sorting, you can associate it with a secondary sorting column.
In the Column InfoBox for a user-sorted column, click Secondary Sort Column
and choose the secondary sort column and its sorting order.

Character sorting rules
Sorting rules are governed by these options:

Case-sensitive and accent-sensitive sorting rules for Release 5 and greater differ
from sorting rules in previous releases in the following ways:

� Both case-sensitive sorting and accent-sensitive sorting are turned off by
default (in previous releases, they were on by default).

� Case-sensitive sorting sorts lowercase letters before uppercase letters (for
example, ab sorts before Aa).

� Accent-sensitive sorting sorts accented characters after non-accented
characters (for example, ab sorts before äa).

Note: Allowing users to re-sort a view by different columns is convenient for
users, saves space and improves performance of your application compared
to having a separate view for each way you want to sort. Consider turning on
this option for most of the columns in your views.
238 Domino Designer 6: A Developer’s Handbook

Overriding alphabetical sorting with a hidden column
The sorting column does not need to be visible. Sometimes you may want to use
a hidden column that selects documents according to criteria that you specify in
a formula as your sorting column. For example, a Service Request form contains
a Priority field, which uses the following keywords list:

� Urgent
� High
� Medium
� Low

You want the By Priority view to sort documents by the value in the Priority field,
but you do not want them to appear in ordinary alphabetical order (High, Low,
Medium, Urgent). You want users to see Urgent-priority documents at the top of
the view, High-priority documents next, and so on.

To do this, create a column that has the following characteristics:

� Is hidden
� Has no title
� Is one character wide
� Uses this formula:

@If(Priority="Urgent";"1";Priority="High";"2";
Priority="Medium";"3";"4")

� Is sorted in ascending order

Add a column to the right of the hidden column that:

� Is not hidden
� Has the title “Priority”
� Is 10 characters wide
� Displays the value of the Priority field

6.8 Designing a folder
Folders have the same design elements as views. You design folders in much the
same way as views, using the Create - Design - Folder command.

The difference between folders and views is that views always have a document
selection formula that collects and displays documents automatically, while
folders remain empty until users or programs add documents to the folder.

Note: Web users cannot drag documents into folders.
 Chapter 6. Domino Design elements: views, folders, and navigators 239

When you create a folder, its design is automatically based on the design of the
default view of the current database. You can choose to base the folders design
on a different existing view, or to design the folders from scratch.

You can keep a folder personal, or share it with other users of a database. No
one else can read or delete your personal folders. To create personal folders in a
database, you must have at least Reader access to the database. To create
shared folders in a database, you must have at least Editor access, and the
option Create shared folders/views must be enabled for you.

When you create a personal folder, Domino stores it in one of two places:

1. If the Manager of the database has allowed it, your folder is stored in the
database, allowing you to use the folder at different workstations.

2. If the Manager has not given you the option to create personal folders in the
database, Domino stores your folder in your desktop file.

6.9 Managing access to views and folders
If you only want certain users to see a view or folder, you can create a Read
access list. Users who are excluded from the access list will no longer see the
view or folder on the View menu or in the View element list in Domino Designer.

Note that a view or folder Read access list is not a true security measure. Users
can create private views or folders that display the documents shown in your
restricted view, unless the documents are otherwise protected. For greater
security, use a Read access list for a form.

You can add users to the Read access list for a view or folder as long as they
already have at least Reader access in the database access control list.

6.9.1 Creating a Read access list
1. Open the view or folder in Design mode.

Note: To see whether a database allows you to store personal folders in it,
select the database, choose File > Database -> Access Control, select
your name, and see whether the Create personal folders/views option is
enabled.

Note: If a folder is stored in your desktop file, you can use the folder only
from your workstation, and you cannot use Full text search in the folder.
240 Domino Designer 6: A Developer’s Handbook

2. Open the InfoBox.

3. Click the Key icon (Security tab).

4. Deselect: All Readers and Above.

5. Click each user, group, server, or access role that you want to include. A
checkmark appears next to each selected name.

6. Click the Person icon to add person or group names from a Personal Address
Book or the Domino Directory.

7. To remove a name from the list, click the name again to remove the
checkmark.

8. Check the option Available to public access users, if you want documents in
this view or folder available to users with public access Read or Write
privileges in the access control list for this database.

9. Save the view or folder.

Note: You must provide server access to views that are Read-restricted when a
database must be replicated.

6.9.2 Creating a Write access list
To allow only certain users to add documents to or remove from a folder, create a
Write access list for the folder. You can add users to the Write access list for a
folder as long as they already have at least Author access in the database
access control list. To grant access to users, do the following:

1. Open the InfoBox.

2. Click the Key icon (Security tab).

3. In the section labeled Contents can be updated by:, deselect the option: All
authors and above.

4. Click each user, group, server, or access role that you want to include. A
checkmark appears next to each selected name.

5. Click the Person icon to add person or group names from a Personal Address
Book or the Domino Directory.

Important: Do not create a Read access list for the default view of a
database.

Tip: Use role names, not groups or individual usernames, to control access to
views. This makes it possible for a non-designer to change who has access by
updating the database ACL.
 Chapter 6. Domino Design elements: views, folders, and navigators 241

6. To remove a name from the list, click the name again to remove the
checkmark.

7. Save the folder.

6.10 Using navigators
A database navigator allows the user to easily access views, Domino data, or
other applications. It is like a roadmap that guides the user through the
application using a graphical interface. Most navigators include graphic buttons
or hotspots, which are programmed areas a user clicks to execute an action. A
hotspot can be text, graphics, or a combination thereof. Refer to Figure 6-2 on
page 186 for an example of a navigator.

6.10.1 Navigator objects
You create a navigator by combining objects. These might include a background
graphic for display only, and some combination of graphic buttons and text
objects. To create navigator objects, import or paste objects from another
application, or use the drawing tools that are supplied by Domino. The drawing
tools include hotspot tools that you use to define a clickable area in a navigator.

6.10.2 Navigator actions
A navigator action determines what happens when users click an object. You can
add actions to all navigator objects except the graphic background.

Domino Designer provides the following Simple Actions that you can attach to
navigators:

� Open another navigator.
� Open a view.
� Serve as an alias for a folder.

Clicking the object displays the contents of the designated folder in the view
pane. Dragging and dropping a document to the folder object adds the
document to the actual folder.

Note: Web users cannot drag documents into folders.

Note: You might also consider using framesets, pages and outlines, as they
offer more flexibility when creating applications for both Notes clients and Web
browsers. To learn more about framesets, refer to Chapter 8, “Domino Design
elements: framesets” on page 283.
242 Domino Designer 6: A Developer’s Handbook

� Open a database, view, or document link.
� Open a URL.

In addition, a navigator can perform the following functions:

� It can run an @function formula.
� It can run a LotusScript program.

6.10.3 Creating a navigator
In the following section, we describe how to create a simple navigator by creating
a graphic background and adding a button. The button will have an action
associated with it.

You can add a navigator to your database in one of three ways:

� Copy an existing navigator from the same database.
� Copy an existing navigator from another database.
� Create a new navigator.

Whichever way you choose, you need Designer access or higher to the
database. In our example, a navigator will be created from scratch.

To create a navigator, do the following:

1. Open the database where you want to create the navigator in Design mode.
2. Go to the navigator pane.
3. Click the New Navigator button. This will bring up the Programmer’s Pane for

navigators.

Creating a background
There are two options for creating a background image:

� Copy any available graphic image to the clipboard and use Create -> Graphic
Background to paste the graphic in as the background.

� Use the File - Import dialog box to import a graphic as a background to your
navigator

Note: You can have only one graphic background for each navigator. It always
has its top left corner at the top left corner of the window, so design the graphic
with this in mind.
 Chapter 6. Domino Design elements: views, folders, and navigators 243

Creating a graphic button
Creating a button is done in the same way as creating a background:

1. Use cut and paste or the Import dialog box to build the graphic button.

2. Move the button to the desired position by dragging it.

3. Choose Design -> Object Properties to display the InfoBox.

4. Select Lock size and position.

5. Click the Highlight tab. The highlight is a rectangular border that appears
around the control. You can choose the color, width and when it appears.

6. Select Highlight when touched and Highlight when clicked.

7. Close the InfoBox.

6.10.4 Adding an action to a navigator object
It is very easy to add a simple action to a navigation object. For example, if you
want to add an action that opens a view, follow these steps:

1. Select a graphic button or create a hotspot.

2. In the bottom pane, select Simple action(s).

3. From the Action drop-down list, choose Open a View or Folder.

4. From the drop-down list next to the Action drop-down list, choose a view.

5. Save your changes.

6.10.5 Adding an action using @Functions or LotusScript
If you require a more complicated action to be added to a graphic object, you can
create the action by using an @function or a LotusScript program. You do this in
the same way as for Simple Actions, except that you select the Formula or
LotusScript option button in the bottom pane.

Tips:

Whenever possible, use the File - Import method to create a background,
because this gives better color fidelity when the graphic is displayed.

To remove a graphic background, choose Design -> Remove Graphic
Background.
244 Domino Designer 6: A Developer’s Handbook

6.10.6 Displaying navigator when a database is opened
To display a navigator when a database is opened, follow these steps:

1. Open the database InfoBox.

2. Click the Launch tab.

3. To display the navigator in the navigation pane, choose Open designated
navigator under On Database Open. (To display the navigator in a full-screen
window, select Open designated navigator in its own window.)

4. From the Navigator drop-down list, select the navigator that you want
displayed in the view.

5. Close the InfoBox.

When the database is opened, the navigator should launch.

6.11 New features in Domino 6
There are several new features and enhancements with views in Domino 6,
including the following:

� Column colors
� Context-sensitive actions
� Customized column icons
� Background images/grids
� Customized twisties
� User customizations
� Create document from view
� Edit document in view

Refer to 12.13, “View enhancements” on page 445 for more information about
the new features and enhancements with Domino 6.

6.12 Summary
Views are the entry point to the data stored in a database. When users open a
view, a list of documents in the database is displayed, each row presenting

Note: Make sure that Click is selected in the Event area. This ensures that the
LotusScript program is run when the user clicks the object
 Chapter 6. Domino Design elements: views, folders, and navigators 245

pieces of information from a document. As such, views give users a logical and
organized overview of information available in Domino databases.

The dynamic nature of views allows application developers to design highly
flexible entries for databases and Web sites, based on user requirements or
access levels.
246 Domino Designer 6: A Developer’s Handbook

Chapter 7. Domino Design elements:
agents

In this chapter, we explain and describe Domino agents: what they are, what they
do, where to use them, and how to create them. We also cover Web agents,
WebQueryOpen and WebQuerySave, and how to make agents available for Web
users.

In addition, we explain how to write agents using LotusScript, how to access CGI
variables, and what access you need in order to run an agent.

Finally, we briefly mention some new features in Domino 6. For detailed
information about these features, refer to Chapter 12, “New features in Domino 6”
on page 347.

7

© Copyright IBM Corp. 2002. All rights reserved. 247

7.1 About Domino agents
Agents allow you to automate many tasks within Domino. They are standalone
programs that can perform a specific task in a database for the user (for example,
filing documents, changing field values, sending mail messages, deleting
documents) or that can perform more powerful actions (such as interacting with
external applications). Agents are the most flexible type of automation because
they can be run by users or in the background, and they are not tied to a specific
view or form.

Agents can either be private (that is, created by the user and used only by the
user), or shared (that is, created by a designer and used by anybody who has
sufficient access to the application). Both private and shared agents are design
elements stored in the database for which they are created. They can be run
manually by the user, or run automatically when certain events occur (such as
mail arriving or documents being changed or added to the database), or
scheduled to run at certain intervals. They can contain Notes Simple Actions,
@function formulas, or a LotusScript or Java program.

The agents are part of a new design container in Domino 6 called “Shared
Code”. This is where all agents, private and shared, are located.

7.2 Access to create Domino agents
Table 7-1 lists the options in the database access control list (ACL) that affect
agents.

Table 7-1 Access to create agents

Type of agent Access needed

Shared agent To create a shared agent, a user must
have Designer access or higher in the
ACL.

Personal non-LotusScript agent To create a personal non-LotusScript
agent that is stored in a shared database,
a user must be assigned the Create
personal Agents privilege.

Shared LotusScript or Java agent To create a shared LotusScript or Java
agent, a user must be assigned the Create
LotusScript Agents option in the Access
Control List, and the user must also be
assigned the Create Personal Agents
authority.
248 Domino Designer 6: A Developer’s Handbook

In the Access Control List (ACL) for the database, there is an option to Create
Personal Agents. Since personal agents on server databases take up server disk
space and processing time, the database manager may deselect this option to
prevent users from creating personal agents in the database.

When agents run, they automatically check the identity of a Domino user against
any server document or ACL restrictions. Manually run agents run with the
identity of the Domino user; scheduled agents run with the identity of the person
who created or last modified the agent.

It is important to draw a distinction between agents run on the user’s workstation
and agents run on the server. Server agents include those run on a schedule (for
example, hourly) or when an event occurs (for example, when a document is
created), as well as those executing in a Domino Web application
(WebQueryOpen, WebQuerySave and those run with an OpenAgent URL). To
avoid chaos, rules govern what agents that run on the server are allowed to do,
as discussed in the following section.

7.2.1 Restricted and unrestricted agents, methods and operations
In the server document of the Domino Directory, you can determine who can run
unrestricted and/or restricted agents on that server. Using unrestricted agents,
users have full access to the server’s system.

Certain functions will not work for users with restricted access. Be aware,
however, that this does not apply on the Web—Web users can run any agent, as
long as the agent is not hidden from Web users.

Notes:

A Domino administrator can also specify restrictions in the server document to
prevent users from running agents on a server. Users denied this server
access cannot create personal agents to execute on the server, regardless of
the ACL setting of the database.

Agents run using the Domino “OpenAgent” URL command may be set to run
with either the invoker’s or the author’s privilege.

Note: In Domino 6, the Run unrestricted agents field has been changed to
Run unrestricted methods and operations. This is basically the same thing,
and includes users that can run all kinds of agents without restrictions.
 Chapter 7. Domino Design elements: agents 249

LotusScript and Java include operations that have full access to the server’s
system and can manipulate system time, file I/O, and operating system
commands. Users or groups with unrestricted access can run an agent that
includes any of these operations in the LotusScript and Java components. Users
or groups with restricted access can include most operations. The only restricted
commands are those that allow access to the server’s system.

Users with restricted access have limited access to the system. For example,
they cannot run LotusScript or Java agents that manipulate system time, file I/O,
and operating system commands.

7.3 Creating an agent
There are several ways to create an agent:

1. Create a new agent

Open the database in Design mode, go to the Shared Code section, click
Agents, and then click New Agent.

2. Copy an existing agent

Open the database you want to copy from in Design mode, and use cut and
paste.

If you choose to create an agent using the first method, the Agent property box
shown in Figure 7-1 on page 251 is displayed.

Notes:

Server id and Lotus Notes Template Development id will always have the right
to run unrestricted LotusScript/Java agents.

Agent restrictions do not apply to code that runs on the user’s workstation (for
example, from the Actions menu). Those agents are limited only by the user’s
level of access to the database and its documents.
250 Domino Designer 6: A Developer’s Handbook

Figure 7-1 Designing an agent in Domino Designer 6

7.3.1 Naming the agent
The first thing to do is to give the agent a name. A descriptive name is especially
important for an agent that you are designing for users to select from the Action
menu. Also, try to keep the first character unique. This is because, as with forms
and views, Domino will use the first unique character as an accelerator key.
Alternatively, you can force Domino to use a letter of your choice as an
accelerator key by putting the underline character in front of it.

Always give an alias name for your agent. You can append more than one alias
name by entering the vertical bar (|) symbol, followed by the alias name. An alias
is an internal name for a agent. You refer to the agent from your code by using
the alias name.

Note: Figure 7-1 shows a new Domino 6 feature: the property box of an agent.
Agents in Domino 6 now have property boxes, like other design elements in
Domino.
 Chapter 7. Domino Design elements: agents 251

The names you give to manually run agents appear as choices in the Actions
menu on the Notes client. To ensure useful and sensible naming of your agents,
following are some agent naming tips:

� Choices on the action menu appear in alphabetical order. To force names to
appear in a different order you can number or letter your agents.

� Use consistent names across databases in order to enable users to recognize
identical agents.

� Use aliases to give your agents another name, or synonym. Using an alias,
you can change or translate the name that users see without disabling code
that references the original name.

� Use a backslash (\) to list an agent under a submenu of the Actions men (for
example, “Reports\Sales report”).

Click Shared/Personal to determine whether the agent may be used by other
users.

To make the agent available for public access, click the “key” tab and check the
“Allow public access users to view and run this agent” checkbox. Creating these
kinds of agents, enabled for public access, allows users with No Access or
Depositor access to view and use any manually run agents.

Tip: When selecting to run from action menu, consider that a user can run an
agent from anywhere in the application—and the agent must behave
appropriately even when run from a place you didn’t intend it to run from.
Therefore, you might instead consider selecting “Run from Agent list”.

Tip: To add an alias, add a vertical bar (|) symbol and the alias name to the
right of the original name. Always keep the original name as the leftmost
name.

Figure 7-1 on page 251 shows an agent with a original name of
“agnRemoveSelectedDocs” with an alias of “1. Remove”.

Note: The ability to toggle between Shared/Personal is a new Domino 6
feature, and enables developers to change this setting during first time
creation, and also later on.
252 Domino Designer 6: A Developer’s Handbook

7.3.2 Scheduling the agent
To decide when agents should run, you choose when it should be triggered.

On event options
� Action menu selection

This is the only choice that allows users to see the agent in the Actions menu.
As previously mentioned, keep in mind that the user can run the agent from
anywhere in the application. The agent must also behave appropriately when
it is run from a place you didn’t intend it to ran from.

� Agent list selection

Use this option when you do not want to the agent to show up in the Actions
menu. If the agent is called by another agent (the main agent), the document
selection is ignored. The main agent always determines the document
selection (“Target” listbox). Also use this option to hide the agent for the end
users.

� Before new mail arrives

This option refers to processing mail before it is deposited in the mail
databases (for example, to move incoming mail to a folder). With this option,
the agent runs before the message is listed in the database. Therefore, be
careful what other options you choose. For example, do not use the Mark
Documents Read simple action, because documents will always be marked
unread when they are listed in the database.

Note: “Allow public access” does not let users exceed their normal access to
other parts of the database. For instance, an agent run by a “Depositor” user
will not be able to look up information in a view unless that view is also public
access.

Tip: Since the agent runs before the message is listed in the database, you
cannot get a handle on the NotesDocument. To get a handle on the document
itself, you need to use “DocumentContext”, which is a property in the
NotesSession class, using LotusScript.

If you want to accomplish the same with the use of Java, you need an extra
step, and go via the “AgentContext” class in Java and use the
DocumentContext through the getDocumentContext.

Note: This option is limited to one agent per database.
 Chapter 7. Domino Design elements: agents 253

� After new mail arrives

This option refers to processing incoming mail: to respond to it, forward it,
modify it, delete it, or file it. Interactive functions and functions that read or
modify data external to the current document are ignored when documents
are mailed into the database (for example: @DbColumn, @DbCommand,
@DbLookup, @MailSend, @Prompt, @Command, or @PostedCommand
are all ignored).

� After documents are created or modified

This option refers to workflow tasks where a task is performed based on new
or changed documents. This trigger is actually a scheduled agent handled by
the Agent Manager, and can execute either on the local Notes client or on a
server.

When you select After documents are created or modified, an Edit settings
button appears. If you click the button, the Schedule dialog box appears. Here
you can set a start and end date for the agent, tell the agent not to run on
weekends, and either choose a server for the agent to run on or choose the
local Notes client. You can also specify that the server is chosen when the
agent is enabled. The delay time using this agent varies between 5 to 30
minutes, depending on the server load.

� When documents are pasted

This option refers to documents that are pasted into the database and need to
be modified as they are being pasted. Note that this event requires action by
the user and does not happen in the background. Paste-activated agents
cannot use the @Command or @PostedCommand.

Tip: This option can be used multiple times within the same database.

Note: Each time this agent runs, it processes all documents created or
modified since it last ran—even if it has been inactive for a while because of
not being run on weekends, for instance.

Note: To prevent documents being pasted, use the new QueryPaste event of
the NotesUIView class. A “when documents have been pasted” agent runs too
late to prevent the paste. It can delete the new documents, but only if the user
who pastes has access to delete.
254 Domino Designer 6: A Developer’s Handbook

On schedule options:
� More than once a day
� Daily
� Weekly
� Monthly
� Never

Use the On schedule trigger to schedule agents to run at regular intervals. When
you select On schedule, you get a new button called Schedule, that brings up a
dialog box to schedule the specific run time, as shown in Figure 7-2.

Figure 7-2 Scheduling an agent

To set up an interval-scheduled agent:

� Specify Run Once Every in a range between 5 minutes and 11 hours 55
minutes.

� Specify the start and end time of each day.

� Specify the start and end date for the agent to run, and whether it should run
on weekends or not.

� Specify the server on which the agent is to run.

The following options are available:

– Running the agent on the original server

To run the agent on the same server where you create the agent, leave the
default setting in the Run box.
 Chapter 7. Domino Design elements: agents 255

– Running the agent on another server

To run the agent on another server, select a server in the Run list box or
enter a server name.

– Running the agent from any server

If you cannot specify a server in advance, select -Any Server- as the
server name in the Run box. This wildcard entry allows any server to run
the agent. However, be aware that choosing this may result in replication
conflicts if several servers run the same agent and change the same
documents.

– Allowing users to choose which server runs the agent

If you select Choose When Agent is Enabled, users are prompted to select
a server when they enable the agent. This is useful for distributing agents
in ready-to-use applications.

7.3.3 Selecting documents to be processed
This selection is set depending on the option selected for scheduling the agent.
For example, if the agent is scheduled to run if new mail has arrived, this option is
set to Newly Received Mail Documents, and it cannot be changed.

You can further narrow down which documents are processed by specifying a
“document selection”. For example, if you want to process only documents which
have a field value of a specific value, click document selection in the agent
window, and then add condition; see Figure 7-3 on page 257.

Tip: If the agent is modifying data in a database, it should run just once on one
server. The changed data is then replicated to the other replicas of the
database.

Tip: Test your selection criteria by entering it in the search bar of a view, to see
whether it selects the right documents.

Note: An agent that uses document selection criteria will run much faster if the
database is full-text indexed.
256 Domino Designer 6: A Developer’s Handbook

Figure 7-3 Document Selection

1. From the Condition drop-down box, select By Field.

2. In the Search for documents area, select a Field.

3. Select Contains.

4. Type in the search criteria.

5. If you have multiple criteria, you must type AND or OR between the search
expressions, and you may use parentheses for grouping.

6. Click OK to save your settings.

Tip: You can also use the full-text query syntax to type out the query you want,
for example: [State] = “MN”. The Add Condition button might not support
every query you need to make. You may also “mix and match” Add Condition
entries with typed information.
 Chapter 7. Domino Design elements: agents 257

Figure 7-4 Adding conditions to agents

Table 7-2 lists which document options are allowed with which run options.

Table 7-2 Run options and document options for agents

Note: Document selection is new in Domino 6, and replaces the search
expression field and Add search button in earlier versions.

Run options Document options

Action menu selection All documents in database.
All new and modified documents since last run.
All unread documents in view.
All documents in view.
All selected documents.
None.

Agent list selection All documents in database.
All new and modified documents since last run.
All unread documents in view.
All documents in view.
Selected documents.
Run once.

Before new mail arrives Each incoming mail document.
258 Domino Designer 6: A Developer’s Handbook

7.3.4 Specifying what an agent should do
There are five ways of specifying what an agent should do: Simple Actions,
formulas, LotusScript, imported Java, and Java. Select which one you will use
with the language pull-down at the top of the Programmer’s Pane.

Simple Actions
These are predefined actions that allow you to define a sequence of actions
without requiring any programming knowledge. They are ideal for the end user
who wishes to automate some routine tasks. (Simple Actions are rarely used by
programmers as they lack the power of the other choices.)

The Simple Actions available are:

� Copy to Database
� Copy to Folder
� Delete from Database
� Mark Document Read
� Mark Document Unread
� Modify Field
� Modify Fields by Form
� Move to Folder
� Remove from Folder
� Reply to Sender
� Run Agent
� Send Document
� Send Mail Message
� Send Newsletter Summary
� Run @Function Formula

After new mail has arrived Newly received mail documents.

After documents are created or
modified

All new and modified documents.

On schedule
- More than once a day

All documents in database.
All new and modified documents.

On schedule
- daily, weekly, monthly, never

All documents in database.
All new and modified documents.

Note: You can combine Simple Actions in one agent to build more complex
functions.
 Chapter 7. Domino Design elements: agents 259

Formulas
Formulas can use the full range of @functions available with Domino. You can
write an @function formula that runs by itself or with a simple action. You cannot
combine an @function formula with a LotusScript program.1

� To write a standalone formula, click Formula in the design pane and type the
formula in the panel.

� To combine a formula with a simple action, click Simple action(s) and then
click Add Action. Choose @Function formula from the Action list and type
the formula in the editing window.

How many times the formula executes depends on the document options. A “Run
Once” agent will execute its formula just one time. Otherwise, formula-based
agents operate on each of the documents in turn and run the complete formula
on a document before proceeding to the next document. The documents are not
processed in any particular order.

A SELECT statement in the formula further limits the search. If you do not
include a SELECT statement in the formula, Domino appends a SELECT @All
statement. Except for SELECT @All, a SELECT statement must be the first
statement in the formula to be effective.

For example, if you want to forward documents only if they do not have
attachments, do the following:

1. In the Agent Builder window, click the Formula option.

2. Enter the following formula in the Programmer’s Pane:

@If(@Attachments>0
 @Return(" ");
 @MailSend("Rune Carlsen"; " "; " "; Subject; _
 "Please handle this" + @Newline; "Body" ; " "));

LotusScript
Agents can also be written in LotusScript, as follows:

1. In the Agent Builder window, select LotusScript as programming language.

2. Enter the LotusScript code in the Programmer’s Pane.

Attention: Simple Actions refer to the displayed name of design elements.
Therefore, changing the name of such an element will cause the agent not to
work.

1 The Evaluate statement in LotusScript lets you get the value of an @Function expression from
within your LotusScript agent, and the Search methods let you specify a macro selection expression.
260 Domino Designer 6: A Developer’s Handbook

Script-based agents run once and must therefore process all documents
selected. You supply the search criteria and the processing order through the
language constructs. Search criteria applied through the agent interface are
effective only through the UnprocessedDocuments property of the
NotesDatabase class. This property contains all documents not yet processed by
the agent, or the result of the search specified to the agent builder, depending
upon how you create the agent.

Imported Java
To attach a Java program to an agent, first write the program in a Java
development environment, like WebSphere Studio Application Developer. In
Domino Designer, click Imported Java and then click Import Class Files to
import the files into the agent.

Java
Agents can also be written in Java, as follows:

1. In the Agent Builder window, select Java as programming language.

2. Enter the Java code in the Programmer’s Pane.

Notice that some of the code is appended to the Programmer’s Pane
automatically; see Figure 7-5 on page 262. You get, automatically, handles to
Session and AgentContext objects. This is very useful, as you will need these
objects in your agent code.

Note: Control is always passed to the agent using the Initialize event, so this is
where your program should begin.
 Chapter 7. Domino Design elements: agents 261

Figure 7-5 A new Java agent

Just like LotusScript agents (and unlike macro agents), Java agents do not
automatically repeat when run on a collection of documents. To process the
documents selected by its selection criteria, the agent must use
getUnprocessedDocuments of the class AgentContext to fetch the set of
documents, and will usually contain a loop to fetch and process each document
from that collection. Alternatively, it could use a method of
NotesDocumentCollection that acts on all the documents at once, such as
stampAll or putAllInFolder.

Java agents can also be set to run on no documents, and any agent is free to
obtain documents from other sources and perform any operations on them.

7.3.5 Displaying the pop-up menu of an agent
1. To display the pop-up menu of the agent, click with the right mouse button on

the agent listed in the agents pane. The agent pop-up menu is shown in
Figure 7-6 on page 263.
262 Domino Designer 6: A Developer’s Handbook

Figure 7-6 Pop-up menu of an agent

2. From this menu you can:

– Display the Design properties

– Cut and copy to the clipboard, and paste from the clipboard

– Delete the agent

– Edit the agent, which is the same as double-clicking the agent’s name in
the Agent pane, to display the Agent Builder window

– Run the agent

– Test the agent, which tells you how many documents the agent will
process

– View the agent log

– Enable or disable the agent

Using Domino 6, there is a new way of enabling and disabling agents, using a
new Agent User Interface. This is also described in Chapter 12, “New features in
Domino 6” on page 347.

You can now—directly in the list of agents—use action buttons to enable and
disable scheduled agents; see Figure 7-7 on page 264.
 Chapter 7. Domino Design elements: agents 263

Figure 7-7 Enabling, disabling, and signing agents

7.3.6 Signing an agent
A server agent will run with the access given to the signer of the agent. To sign a
agent in Domino 6, you have the following options:

� Sign the database

An administrator can sign either the whole database or design elements
selectively with a administrative ID file, or another ID file using the Domino
Administration client. The database and all its design elements will be signed
with this ID file, and the agent will run with the access given to this ID.

� Edit and re-save the agent

To sign just a single agent, open the agent and then save it. This will sign the
agent with the current user’s ID file.

� Sign the agent

With Domino 6, you can now sign a single or multiple agent at once, using a
action button in the agent list or from the menu that you can bring up by
right-clicking the agent on agents list.

Figure 7-7 shows the new buttons as part of the list of agents in the Designer.
Pressing this button will sign the marked agent(s) with the current user ID file.

Agents that are run by a user will run with the access of that user. For these
agents, signatures are not an issue as far as determining the access rights of
the agent, except that—as with all Notes code, and depending on the user’s
Execution Control List—the agent may not be able to run or perform certain
operations unless signed with the recognized ID.
264 Domino Designer 6: A Developer’s Handbook

7.4 Testing an agent
It is important that you, as a developer, test an agent before copying that agent to
a production server. Having a test environment is valuable for testing and
developing agents.

7.4.1 Testing an agent during development
You can quickly test an agent by simulating a run without affecting documents.

1. Select the database and go to the Shared Code and Agent pane.

2. Select the agent and choose Agent -> Test, or right-click on the agent and
choose Test.

3. Read the Test Run Agent Log, which describes how many documents would
be processed and what action would be taken if the agent were actually run.

7.4.2 Testing an agent before copying it to a live database
For agents that have multiple steps or complex tasks, split the process into
several smaller tasks and create an agent for each. Test and fix each smaller
agent first. When everything is working correctly, combine the agents into one
and then test the agent again.

1. Choose File -> Database -> New Copy to make a test copy of the database
with documents. For all agents except those that act on mailed documents,
the test copy can be local.

2. If the agent works on mailed documents, the test database must be on a
server, and a Mail-in Database document must exist in the Domino Directory.
Mail a few documents to the test database.

3. If you do not need to run the agent from a view, select the database and go to
the Shared Code and Agent pane, select the agent you’re testing, and choose
Agent -> Run; otherwise, open the database, select the view, and choose
Actions -> <Agent Name>.

4. Make any required changes to the agent to fix any problems that the test run
shows. If necessary, create a new copy of the database to run the agent
again.

5. When the test shows no problems, copy the tested agent to the live database.

7.4.3 Checking the Agent Log
Every time an agent runs, it writes a report that includes when it ran, how many
documents it ran on, and what actions it took on those documents. Each new run
 Chapter 7. Domino Design elements: agents 265

of the agent writes over the previous log report. Domino stores the Agent Log
with the database.

To view the most recent Agent Log:

1. Select the agent whose log you want to check and choose Agent -> Log.

2. Click OK to close the Log window.

If there is no Log (because the agent has never run), you will see the following
message: This agent has never been run before.

7.4.4 Debugging agents
To debug your agents, you can use the debugging features of Domino Designer.
However, it is sometimes difficult to debug agents on your workstation when
these agents are expected to run on a server (background agents) or on the
Web. Use one of the following techniques to debug such agents:

� Include MESSAGEBOX statements to print out statements.

MESSAGEBOX statements in your LotusScript agent will write directly to the
server console, and for that reason, also to the server log.nsf file. This method
is convenient, but can clutter the server log if you have many statements or
run the agent repeatedly. To handle this, you either need your own testing
server, or you need permission to populate a server log with debugging
information.

� Use the NotesLog class to write out your statements.

� Use On Error statements to trap any errors that occur during execution. In
your error trap code, use AgentLog or Messagebox to write error information
including line number. Note that On error statements do not slow your agent
down, so you can leave this in your production code to help you track down
any problems that occur after the application is rolled out.

� With Domino 6, there is a new debugging feature called Remote debugger,
which enables you to connect to a running agent on the server and debug it.
You can also invite other persons to debug it at the same time. This subject is
covered in detail in 12.6.2, “Remote debugger” on page 387.

Note: LotusScript agents will only report how many documents matched their
search criteria, not how many were actually modified. Use the methods
NotesLog class to log messages into the log.
266 Domino Designer 6: A Developer’s Handbook

Example debugging agents using MESSAGEBOX

Dim session As New NotesSession
Dim db As NotesDatabase
On Error Goto trap
Set db = session.currentdatabase
Messagebox “Debugging to console and log.nsf : “ & db.title

...
trap:

Messagebox “Error “ & Err & “ in Initialize, line “ & Erl & “: “ & Error
Exit Sub

The preceding messagebox will be included in the server log.nsf file. If there’s
any error event, the error details, including line number, will be recorded in the
log file as well.

Example debugging agents using AgentLog class

Dim session as New NotesSession
Dim db as NotesDatabase
Dim agentLog As New NotesLog("Agent log")

Call agentLog.OpenAgentLog
Set db = session.currentdatabase
Call agentLog.LogAction("DB Title returns: " & db.title)
Call agentLog.Close

Tip: If you modularize your LotusScript code (which is a useful idea), you can
get a stack trace in case of error by trapping errors in each sub or function and
adding line number information to the error message. At the top of each
module, add the following line:

On Error Goto trap

At the end, add the following (where subname is the module name):

Exit Sub ‘ or Function...
trap:

Error Err, Error & “/subname:” & Erl

Optionally, you can add values of important variables at the end, also. As the
error gets passed up the stack, each function adds its name and line number.
The error trap in the Initialize sub can record the error in the log, along with its
value of Erl, so that you can see not only where the error happened, but how
the code got to that point.
 Chapter 7. Domino Design elements: agents 267

Figure 7-8 Agent log showing data from debugged agent

7.5 Enabling and disabling scheduled agents
If you have Designer access or above, you can disable any agents (except
manually run agents) in order to prevent servers from running them
automatically. This is useful for debugging a problem with an agent.

Designers can still run disabled agents by selecting an agent at the agent pane,
and choosing Actions -> Run, or by right-clicking on an agent, and selecting
Run. After you re-enable them, scheduled agents resume their schedule.

Note: This example logs directly to the agentlog which you can find in the
Domino 6 Designer Client. You can also log to separate databases or files,
using methods found in the LotusScript class NotesLog.

New in Domino 6: As a developer, you can allow agents to be enabled and
disabled by users who have editor access or higher. This allows a scheduled
agent on the server to be enabled or disabled, without re-signing the agent;
see Figure 7-9 on page 269.
268 Domino Designer 6: A Developer’s Handbook

Figure 7-9 User activation

7.5.1 To disable and enable individual agents
1. Select the database and go to the Shared Code and Agent pane.

2. Click the enabled agent and choose Disable from the new Domino 6 user
interface (action buttons in the list of agents). Icons will toggle and show what
state the agent is in; see Figure 7-10.

To enable a disabled agent, click the agent and choose the Enable button.

Figure 7-10 Enable and disable agents

Tip: If the Allow user activation box is checked and someone enables the
agent, the agent is not re-signed. If this box is not checked and someone (with
Designer access or above) enables the agent, the agent is re-signed.
 Chapter 7. Domino Design elements: agents 269

7.5.2 To disable all automated agents in a database
Disabling all agents is useful for debugging a problem with an agent running on a
server.

1. Select the database and choose File -> Database -> Properties.

2. Click Disable background agents for this database.

Figure 7-11 Disable all automated agents in a database

7.6 Troubleshooting agents
The Agent Manager runs background agents—scheduled, mail-activated, and
change-activated agents—according to the schedules that you specify in the
agent manager section of the server document in the Domino Directory. If an
agent is not executing correctly, or if you are experiencing performance
difficulties, there are a number of areas that you can examine to correct
problems, as described in the following sections.

7.6.1 Agent is not running
For this problem, check the access for the agent to make sure that the agent can
run on all specified databases. For example, if you design an agent to copy
documents from database A to database B, but you don’t have access to
database B, the agent will not be able to execute the task. To check for access
problems, view the Agent Log after the agent runs, or use other debugging
methods to capture what is going wrong.
270 Domino Designer 6: A Developer’s Handbook

Make sure that the agent is completing its task. If the task exceeds the amount of
time allotted in the Max LotusScript/Java execution time setting in the server
document, the Agent Manager terminates the agent before the task is complete.
Increase the allotted time for execution, or rewrite the agent as several smaller
agents.

Also, make sure that the signer of the database or the agent itself has execution
rights and access to perform and run the agent on the server, as well as access
to all the involved methods and actions taking place.

7.6.2 Agent Manager is not working
For this problem, make sure that the Agent Manager is scheduled to run when
agents are scheduled. In the Agent Manager section of a server document in the
Domino Directory, make sure the Start time and End time parameters are set for
Daytime and Nighttime to cover the hours when agents are scheduled to run.
Adjust these parameters as necessary.

7.6.3 Agents are running slowly
For this problem, check to see if you have too many agents competing for server
resources. Reschedule agents for the nighttime hours, when system demand is
lower.

Alternatively, allocate additional system resources to the Agent Manager by
increasing the Max concurrent agents setting and the % of polling period setting
in the Agent Manager section of the server document. (Be aware, however, that
shifting resources to the Agent Manager might slow down other server
processes.)

Listed here are some of the reasons why agents might be slow:

� The database is not full-text indexed.

� Agents iterate through all documents to find a few to act on, instead of using
selection criteria.

� You are using GetNthDocument instead of GetFirstDocument and
GetNextDocument.

� Agents should use NotesView. AutoUpdate to prevent view re-indexing each
time a document is modified.

7.6.4 Agent will not run on a particular server
For this problem, examine the Agent Manager section of the server document in
the Domino Directory to make sure that the user who created the agent has
 Chapter 7. Domino Design elements: agents 271

access to run the agent on the server. Also, check the access control list for the
server to make sure that the user who creates an agent has access to the server.
An agent inherits access rights from its creator, so an agent cannot run on a
server to which the creator does not have access.

If the agent cannot access information on another server, check the other
server’s trust setting on the server document.

7.6.5 Debugging with NOTES.INI settings
If you are unable to determine why your agent is not running by using these
procedures, you can turn on the debugging flag for the Agent Manager in the
NOTES.INI file on the server. To do this, add the following line to the server
NOTES.INI:

Debug_AMgr = flag

Flag can be one, or a combination, of those listed in Table 7-3.

Table 7-3 Debug flags

The output is written to the server console log and the Notes Log.

Additionally, you can turn on agent execution logging. To do this, add the
following line to NOTES.INI. (You can also do this in the server configuration
document in the Domino Directory.)

Log_AgentManager = value

Flag Output

c Show output agent control parameters

e Information about Agent Manager events

l Agent loading reports

m Agent memory warnings

r Agent execution reports

s Information about Agent Manager scheduling

v Verbose mode, showing information about agent loading,
scheduling, and queues

* All of the above information (same as turning on all the flags)

Important: Be aware that debugging affects server performance.
272 Domino Designer 6: A Developer’s Handbook

The list of values is shown in Table 7-4.

Table 7-4 Values for Log_AgentManager parameter

This setting gives you only a subset of information compared to what the
Debug_AMgr generates, but it has less of an impact on the performance of the
server.

7.6.6 Debugging at the server console
Use the following server commands to troubleshoot the Agent Manager; in the
following sections, we describe their use in more detail.

� Tell amgr schedule
� Tell amgr status
� Tell amgr debug

Tell amgr schedule
Issuing this command on the server console shows the Agent Manager schedule
of all agents scheduled to run for the current day. Use it to see if your agent is
waiting in one of the Agent Manager queues.

There are three queues:

� A queue for agents that are eligible to run (E)

� A queue for agents that are scheduled to run (S)

When the time they are scheduled to run arrives, they are moved into the
Eligible to run queue.

� A queue for event-triggered agents waiting for their event to occur (V)

Event-triggered agents (new mail and document creation/modification agents)
are queued in the Event queue until an event they are waiting for occurs.
When the event occurs, the agents move into the Scheduled queue and then
into the Eligible to run queue.

Here is an example:

E S 09:33 AM Today agent_a TEST.NSF
S S 09:54 AM Today agent_b TEST.NSF
V U agent_c TEST.NSF

Value Output

0 No logging

1 Show partial and complete success

2 Show complete success
 Chapter 7. Domino Design elements: agents 273

In this example, the first column contains the Agent Manager queue type. The
second column contains the agent trigger type (S means the agent is scheduled,
M represents a new mail-triggered agent, and U represents a new/updated
document-triggered agent). The following columns show the time that the agent
is scheduled to run, the name of the agent, and the database name.

Tell amgr status
Use this command to show a snapshot of Agent Manager status. It provides
information about all settings in effect.

Tell amgr debug
Use this command to set or change Agent Manager debug settings. You need to
use the same debug values as shown above for the Debug_AMgr setting in the
NOTES.INI file.

7.7 Agents and the Web
Agents are also used in the Web environment to perform several functions. In this
section, we will concentrate on agents that can be activated by a user on a Web
browser.

As an application developer, you will most likely create two sets of agents in order
to perform the same operations from both a Notes client and from a Web
browser. The main reason for this is the difference in the way in which an
application interacts with the user in the two environments.

In Domino, the applications can interact with users by using message boxes or by
prompting information (for example, to change the values in the fields of the
currently open document).

On the Web, however, the only way to show information to users without using
JavaScript is by using HTML to create Web pages. If you want to change the
current document on the Web, you can only do it before the document is loaded,
using the WebQueryOpen event, or before it is saved, using the WebQuerySave
event.

Agents for Web users are most often written using LotusScript or Java, since
Simple Actions are not available on the Web and @formulas do not allow you to
return information to users.

Note: It will take up to a minute for an agent to appear in a queue, or to move
from one queue to another.
274 Domino Designer 6: A Developer’s Handbook

Note: Remember, agents cannot run in a browser. They can be activated from a
browser, but they run on the Domino server containing the agent.

7.7.1 The Document Context of a Web agent and CGI variables
Whenever a LotusScript agent is run from the Web, the
NotesSession.DocumentContext property returns a NotesDocument containing
information about the Web session, as well as access to all items in the
document. This document contains the values of all CGI variables associated
with the browser session and with the agent call.

If an agent is called in connection with a Web form event (WebQueryOpen or
WebQuerySave), DocumentContext gives the document being opened or saved.
The CGI variables are also supplied in this document (even though they might
not appear on the form).

Common Gateway Interface (CGI) is a standard for interfacing external
applications with HTTP servers. When a Web user saves a document, opens an
existing document, or runs an agent using an “?OpenAgent” URL, the Domino
Web server uses CGI variables to collect information about the user, including
the user’s name, the browser, and the user’s Internet Protocol (IP) address.

The following example demonstrates how to access CGI variables:

Dim session As New NotesSession
Dim context As NotesDocument
Dim CGIValue As String

To create an instance of the DocumentContext:

Set context = session.DocumentContext

Once you have access to this object, you can access every CGI variable and
store it in a LotusScript variable; for example:

CGIValue = context.HTTP_USER_AGENT(0)

CGIValue (string) now has information about the user’s browser.

Following are some examples:

� To determine Web identity:

Set webUserName = context.remote_user(0)

� To read the arguments passed, that is, the string followed by the ampersand
(&) that ends some URLs:

Set args = context.query_String(0)
 Chapter 7. Domino Design elements: agents 275

7.7.2 Agent output
The Domino server captures the output stream of an agent and uses that as the
Web page returned by the agent. In the case of a LotusScript agent, the output
stream is anything output with a Print statement.2

There are three types of values the agent might choose to print:

� The actual information to be displayed on the browser (an HTML Web page,
generally)

� A URL that the browser should redirect to, in [square brackets]

� A URL that should serve as the new page contents, in [[double square
brackets]]

When redirecting to a URL, it’s generally preferable for performance reasons to
use the double brackets, since this saves one “round trip” between the browser
and server. This is the preferred option when possible.

If your agent prints anything that does not start with square brackets, the output
is assumed to be HTML code. Domino will automatically add an HTML header to
the page. If you prefer to write your own HTML header, or if your output is not
HTML, you must supply a header line that tells the content type of the page. For
instance, if you’re printing HTML information, your first print statement should be:

Print "Content-Type:text/html"

If your output begins with a Content Type line, Domino will send the rest of your
output exactly as is. You may specify other content types using the standard type
codes recognized by browsers, so it’s possible for agents to output PDF files, GIF
images, and so on.

7.7.3 Running multiple instances of an agent
By default, all agents run serially from the Web, one after the other. This can
cause a performance bottleneck on heavily used sites or sites with slow agents.
When Domino is being used as a Web server, you can add the following line to
the NOTES.INI file on the Domino server:

DominoAsynchronizeAgents=1

2 Messagebox output goes to the server log database, log.nsf.

Tip: Rather than use an agent to generate a Web page on the fly, it is
generally easier and more efficient to create a page (or form) that displays the
desired output, and redirect the browser to that page.
276 Domino Designer 6: A Developer’s Handbook

This allows an agent to be run by more than one person at the same time. By
default, the Domino server only runs one copy of an agent at a time and queues
other requests.

Agent designers will need to make sure their agents are thread-safe. Currently,
there is no way to selectively serialize an agent.

7.7.4 WebQueryOpen and WebQuerySave agents
There are two special events in all Domino forms: WebQueryOpen and
WebQuerySave.

WebQueryOpen event
A WebQueryOpen event runs the agent before Domino converts a document to
HTML and sends it to the browser. Domino ignores any output produced by the
agent in this context.

Examples for using this agent include performing large computations that are not
possible with @commands, or collecting statistics about who opened documents
and when.

WebQuerySave event
A WebQuerySave event runs the agent after field validations and before Domino
saves the document in the database. The agent can run any operations with
document data or modify the document.

An example of a WebQuerySave agent could be an agent that creates another
document in the Notes database but does not save the current document.

To perform error checking, field validation, and other processing before Web
users open or save documents, create a shared agent that runs manually.

Important: Be sure to implement this with caution. There have been problems
registered using this setting in combination with Domino.Doc and other
situations.

This NOTES.INI setting will make all Web-triggered agents run
asynchronously; however, before using this setting, you must consider what all
the agents on the Web site are doing so they do not run over each other and
cause data corruption.

Data corruption could be caused by two or more invocations of the same
agent attempting to modify the same document at the same time. This could
produce unpredictable results.
 Chapter 7. Domino Design elements: agents 277

You can then write a formula that uses @Command([ToolsRunMacro]) to run the
agent and attach it to the WebQueryOpen or WebQuerySave form events. This
simulates the LotusScript QueryOpen and QuerySave form events that are not
supported on the Web.

The best place to do validations in a Web application is normally with JavaScript
code on the form. Since JavaScript executes in the browser, without the need to
submit the form to the server, it executes much faster and reduces server load.

However, certain validations have to be done on the server because they depend
on information that’s only available on the server (for example, a test to see that
the document title is unique in the database). If a WebQuerySave is used for
validation, a LotusScript agent can use Print to display an error message and set
the document’s SaveOptions field to zero (“0”) to prevent it from being saved.

7.7.5 Using the @URLOpen command to call agents
The @URLOpen function allows you to reference an agent within a formula. You
can associate such a formula with a button to invoke agents from a Web browser.
These agents run when the user clicks the button. Following is an example
@URLOpen formula to run an agent named UpdateEntries:

@URLOpen("/" + @WebDbName + "/UpdateEntries?OpenAgent")

7.8 Using agents (advanced topics)
Agents are very useful if you need to change the design of a database. They can
help you to keep the data in the database consistent with the design. For
example, you can use an agent to update all documents that are affected by a
form change. Usually you will create a private agent which selects the documents
affected by the form changes and run it manually.

Tips:

It’s inefficient to write an WebQuerySave agent just for the purpose of
displaying a Thank you page when a form is submitted. Instead, use the
$$Return field on the form to give the URL of a page that displays the
message you want.

Macro formulas in form fields or in the WebQueryOpen and WebQuerySave
events are more efficient than agents. Since formula language now supports
looping, you can do more than you might think about without writing agents.
278 Domino Designer 6: A Developer’s Handbook

The following is a list of examples of where agents can be very useful after
changes are made to the design of a database:

Editing and resaving documents
To save the step of editing and resaving documents manually, create an agent
that uses the following formula:

@Command([ToolsRefreshAllDocs])

Adding a field
If you create a new field, insert the new field into existing documents by creating
an agent that uses the following formula:

FIELD New_field_name := value;

where New_field_name is the name of the field, and value is the value you want
the field in these documents to have. The value can be the field default value, a
formula that calculates the value, or a null value (“”) that inserts the field into the
documents, but does not give them any initial value.

Removing field data from all documents
If you delete a field, existing documents continue to store the obsolete field and
its values. This unnecessary storage can affect disk space. To remove the
obsolete field, create an agent that uses the following formula:

FIELD Field_name := @DeleteField;

After you run the agent, compact the database to reduce its actual file size.

Renaming a field
If you rename a field, existing documents continue to refer to the old field name.
To update documents to refer to the new name, create an agent that uses the
following formula:

FIELD New_field_name := Old_field_name;
FIELD Old_field_name := @DeleteField;

where New_field_name is the new name for the field, and Old_field_name is the
original name for the field.

Note: This will not succeed with fields assigned by LotusScript event code on
the form.

Note: For removing rich text fields, don’t use this technique; LotusScript will
give you better results.
 Chapter 7. Domino Design elements: agents 279

Reassigning documents to another form
If users attempt to open documents created with a form that has since been
deleted, they see a message indicating that the form cannot be found. To prevent
users from seeing this message, use these agent options to reassign existing
documents to another form:

1. Under Which document(s) should it act on, select All Documents in
Database and click Add Search.

2. Select By Form Used, select the name of the obsolete form, and click OK.

3. In the design pane, click Formula and enter:

FIELD Form := "Reassigned_form_name";

where Reassigned_form_name is the name of the form that the documents
should use.

Removing the stored form from documents
Selecting the form property Store Form in Documents is useful for mail-enabled
applications in which users need to see a document and don’t have the original
form stored in their mail databases.

This form property is permanently attached to all documents created with the
form. To remove the stored form, remove all internal fields connected with that
form by creating an agent that uses the following formula:

SELECT $TITLE="Old_form_name";
FIELD $TITLE:=@DeleteField;
FIELD $INFO:=@DeleteField;
FIELD $WINDOWTITLE:=@DeleteField;
FIELD $BODY:=@DeleteField;
FIELD $ACTIONS:=@DeleteField;
FIELD FORM:="New_form_name";

This formula removes all internal fields attached to the documents where
Old_form_name is the name of the form used to create the documents. The last
line creates a FORM field where New_form_name is the form that will display the
documents in the future.

After you run the agent, compact the database to reduce its actual file size.

7.9 New features in Domino 6
The new features of agents in Domino 6 are covered in Chapter 12, “New
features in Domino 6” on page 347.
280 Domino Designer 6: A Developer’s Handbook

The following features of agents are detailed there:

� New agent user interface

� “Run on behalf of”

� User activation

� Converting shared and private agents

� Remote debugging of server agents

� Ability for server agent to access information on other servers

7.10 Summary
Agents allow you to automate many tasks within Domino. They can operate in
the background to perform routine tasks automatically, and in the foreground
when called by the user. They can easily be created without programming
knowledge by using Simple Actions, but very complex algorithms can also be
implemented using LotusScript or Java.

On the Web, you can also use agents to perform operations before a document is
opened or before it is saved. In addition, you are also able to access CGI
variables to capture information about the user.
 Chapter 7. Domino Design elements: agents 281

282 Domino Designer 6: A Developer’s Handbook

Chapter 8. Domino Design elements:
framesets

In this chapter, we describe what Domino framesets are, and how to design and
modify them. We discuss the basic design elements used when creating a
Domino database. We also explain how to show different information to Web
users and Notes users

8

© Copyright IBM Corp. 2002. All rights reserved. 283

8.1 Framesets
A frameset in a Notes client or in a Web site is a screen that displays multiple
independent pages, each in its own rectangular “frame”. The frameset designer
provides visual tools and wizards to easily create multi-paned interfaces for
Domino applications.

Framesets provide a standard way to set up a multi-pane interface for the user.
The Frameset designer enables you to create framesets and then associate
specific pages, views, forms, Java applets, ActiveX components, or any URL with
each frame. You can also make your framesets dynamic by writing a macro
formula to calculate what to display in the frame.

We will use the TeamRoom database template as a basis for demonstrating the
Domino 6 elements. You will find the template for the TeamRoom database on
your Domino server.

To create a new frameset in Domino Designer, open the Framesets design view
and click New Frameset, or choose Create -> Design -> Frameset.

A window such as Figure 8-1 will be displayed where you can choose your initial
configuration. Select the layout you want and click OK.

Figure 8-1 Create a new frameset

You are not limited to your selection on this screen; you can add or remove
frames later.
284 Domino Designer 6: A Developer’s Handbook

8.1.1 Specifying frameset properties
The Frameset InfoBox contains all the information related to framesets. To view
the frameset properties while you have a frameset open in Designer, use
Frame/Frameset Properties.

In the InfoBox, click the triangle in the middle of the InfoBox title and select
Frameset. An InfoBox will be displayed which allows you to set the properties of
the frameset. It contains two tabs:

� Basic
� HTML

Using the Framesets Basic tab
The Frameset Info tab stores general information about the frameset; see
Figure 8-2.

Figure 8-2 Frameset properties

1. In the Name field, specify the “display name” of the frame.

2. In the Alias field, provide an alias for the frameset. An alias is an internal
name for the frameset. Use the alias if you need to refer to the frameset in
your program code. This lets you change the display name without breaking
your code.

3. The text in the Comment field is information for developers.

4. In the Title field, enter a macro formula that will be the window title of the
frameset. Generally this will be a constant string (in quotes), but you can use
most of the @Functions in the Notes macro language, as shown in the
example in Figure 8-3 on page 286.
 Chapter 8. Domino Design elements: framesets 285

Figure 8-3 Computed title in Designer client

This would give a more personal look to the application; see Figure 8-4.

l

Figure 8-4 Computed title in Notes client

Using the HTML tab

The HTML tab is the same for frames as it is for various form elements, for
consistency. However, the Class and Style attributes do not apply to frames, so
there is no reason to fill them in.

8.1.2 Specifying frame properties
Frameset is a collection of frames and now we’ll show how to modify these
frames. The Frame Info Tab stores general information about the frame.

Tip: Although Title is not a required field, supplying a title makes for a more
user-friendly application. The user cannot tell which tab is which if they all say
“(Untitled)”. This information is also shown on the window title when accessed
with a Web browser or Notes client.
286 Domino Designer 6: A Developer’s Handbook

1. In the InfoBox (property box), click the triangle in the middle of the InfoBox title
and select Frame. An InfoBox will be displayed which allows you to set the
properties of the frame. It consists of five tabs:

– Info
– Frame size
– Frame Border
– Advanced
– Additional HTML

Using the Frame Info tab
1. In the name field, you specify the frame name. This is the name you would

use to target other links (for example, when you click a link in frame A, the
new page is displayed in frame B). This field contains the name you will use to
tell the link which frame to open in.

2. In the Type field, you specify what you want the frame to display initially when
the frameset is opened. You can select three different types:

– Link

Link requires that you paste in a link that you've already copied to the
Clipboard. Click the Paste icon to paste in the link. There are three kinds of
links you can paste in from the Clipboard: View, Document, or Anchor.

– Named Element

A named element is a design element that you have already created and
named. A named element can be a page, form, frameset, view, folder, or
navigator.

When you click Named element, then a new icon called Browse will be
available in the info tab of the frame property; see Figure 8-5 on page 288.

Note: Database links are not supported in framesets.
 Chapter 8. Domino Design elements: framesets 287

Figure 8-5 Browse named elements

When you click this, a window will be displayed allowing you to navigate
and easily select the named element you want to link to; see Figure 8-6.

Figure 8-6 Locate object window

The choices you have to verify are:

i. Kind of object

Choose the named type of element.

ii. Database

Choose from which database you want to pick this element.

i. Element name

Choose the element itself.
288 Domino Designer 6: A Developer’s Handbook

Instead of selecting a specific design element, type, and database, you
also have the option to calculate these when the frameset is opened. Click
the button with the at (@) symbol; this will open a formula editing window,
as shown in Figure 8-7. This is useful when you need to display different
information depending on the user’s identity, roles, or preferences.

Figure 8-7 Frame formulas to display different screens depending on user roles

– To put a Web page into a frame, choose URL and enter the full URL
specification (for example, http://www.ibm.com/redbooks). You can also
paste in a URL or use a formula that evaluates to a URL.

When you click a link in a Web page (in the Notes client or in a Web
browser), the link may open within the same Web page or in a new
window, depending on the setting for that Web page.

Note: The database formula must return the file path of the database in the
form server!!pathname (for example, Trondheim!!mail2\rcarlsen.nsf). For local
databases, use only the pathname.

Tip: The URL must include the initial “http://” or “https://”. You may also specify
a Notes URL, beginning with “Notes://”. For examples of Notes URLs, explore
the design of the framesets in your bookmark.nsf database.
 Chapter 8. Domino Design elements: framesets 289

3. Default target for links in frame

Enter the target frame for links activated within the current frame.

Using the Frame size tab
Figure 8-8 shows the Frame size tab. On this tab, you can manually adjust both
the width and height of the frame.

Figure 8-8 Frame size

1. Switch to the size tab of the InfoBox.

The following options are available:

– Relative - This means that you specify the width and height relative to the
frames in this set. For example, if you have two frames and set the width
for the first one to 1 and the second to 2, the second frame will be twice as
wide as the first.

– Pixel - With this selection you provide an absolute value measured in
pixels.

– Percent - This option allows you to specify the width and height values as
a percentage of the window.

You can also resize the frames by dragging their edges with a mouse.

2. Scrolling

If you choose On, this forces a scroll bar for the frame; if you choose Off, then
no scroll bar will appear. If you choose Auto, the scroll bar appears if it is
needed. The default is Auto.

3. Allow Resizing

If you choose Yes, you allow users in the Notes client or Web browser to
change the height and width of frames by dragging their borders. If you
choose No, then users cannot drag borders to resize the frame.
290 Domino Designer 6: A Developer’s Handbook

4. Set Initial Focus

Checking this box causes the focus to be on this frame when the frameset is
launched in the Notes client. If this property is enabled for more than one
frame in a frameset, the first frame found is enabled.

If this property is enabled on a frame that either has no content or has content
that cannot be found, there is no frame focus.

Using the Frame border tab
Figure 8-9 shows the Frame border tab.

Figure 8-9 Frame border

The following options are available:

1. 3-D border

This displays three-dimensional borders between the current frame and its
adjacent frames.

Note: When a user drags a frame border, they are really resizing more
than one frame—one gets larger, while another gets smaller. To let the
user resize a frame, all the frames involved must allow resizing.
 Chapter 8. Domino Design elements: framesets 291

1. Apply to all frames

This adds or removes three-dimensional borders between all frames in the
frameset

2. Border style

– Border width (in pixels) - the default is 7 pixels. Checking Default means
that the frame displays according to the user's browser settings. Each
browser renders design elements differently, so be sure to preview your
work in each browser if you are choosing this setting.

– Border color - choose a color from the drop-down color chart. Click the
system (monitor) icon at the top of the color chart to get the default color.
Click the wheel icon at the top of the color chart to create a custom color.

3. Border caption

You can use a caption for frames and turn it collapsible. In this way, you can
label the frames and allow wide navigation between the collapsible frames,
thereby providing more information in the same screen area and displaying it
at your convenience.

– Caption Formula - enter a formula that translates to a caption that appears
in the border.

– Show - you can choose None, Caption only, Arrows only, or Both:

• None - shows the default border with no caption or arrows.
• Caption only - displays a caption in the border.
• Arrows only - displays an arrow in the border. This arrow lets you open

and close the frame.
• Both - displays both a caption and an arrow in the border.

– Align - note the following:

• For a caption, choose to align so that the caption appears inside the
top or bottom border of the frame.

• For an arrow, choose to align so the arrow appears at the top, bottom,
left, or right border of the frame.

• For both a caption and an arrow, you can align top or bottom. Note that
the border appears only where the caption or arrows appear. For
example, if you choose Top, then the border displays on the top only.

Notes:

This is a new feature in Domino 6. Refer to 12.19.1, “Collapsible and
captionable frames” on page 475 for more information.

This feature is only supported in the Notes client.
292 Domino Designer 6: A Developer’s Handbook

– Justify - choose to justify the caption or arrows so they appear to the left,
right, or center of the border.

– Open - choose a size in pixels or as a percent of the frame. This size is the
default size that the frame opens to when the user clicks the border of a
closed frame.

– You can also specify text characteristics for the caption and arrows, such
as font, size, style, and color. In addition, you can specify a background
color for the border.

For an example of how this looks, refer to the default Welcome Page in the Notes
client.

Figure 8-10 shows a frame that is expanded.

Figure 8-10 Caption on frame and collapsible frames

This frame can be collapsed by clicking the frame border arrow; see Figure 8-11
on page 294.

Note: You can’t see Align options if you select Show - None.
 Chapter 8. Domino Design elements: framesets 293

Figure 8-11 Frame Border tab

Figure 8-12 on page 295 illustrates the relationship between Designer settings
and the output.
294 Domino Designer 6: A Developer’s Handbook

Figure 8-12 The relationships between Designer settings and output

Using the Frame Advanced tab
Figure 8-13 shows the Frame Advanced tab.

Figure 8-13 Frame Advanced

The following options are available:

1. Frame Spacing

The default is minimal space between frames. You specify spacing between
frames in pixels.
 Chapter 8. Domino Design elements: framesets 295

Checking Default means that the frame displays according to the user's
browser settings. Each browser renders design elements differently, so be
sure to preview your work in each browser if you choose this setting.

2. Margin Height and Margin Width

The default is minimal space between the frame border and the frame
content. You specify height and width in pixels.

Checking Default means that the frame displays according to the user's
browser settings. Each browser renders design elements differently, so be
sure to preview your work in each browser if you choose this setting.

Using the Frame HTML tab
1. The HTML tab has the same fields as the HTML tab of framesets.

8.2 Changing the layout of a frameset
You can change the layout of a frameset whenever there is a need to do so.
Simply select the frame that you want to alter and select the desired action.

By using the buttons shown in Figure 8-14, you can add, delete and alter the
contents of the frame. You can then size the frame by dragging its border, or by
specifying a precise size in the Properties box, as previously described.

Figure 8-14 Frame buttons

Note: This property is not supported in the Notes client.

Note: This property is not supported in the Notes client.

Tip: Most screen reader software will speak the title text of the frame to let the
user know what frame they’re in. To make your application accessible, you
should fill in this field.

To learn more about designing accessible applications, see:

http://www-3.ibm.com/able/accessr5.html
296 Domino Designer 6: A Developer’s Handbook

When you are designing frames and framesets, the View menu contains the
following commands:

� Refresh all

This refreshes the content of each frame with changes you have made since
opening the frameset.

� Show Frame Content

Once you have populated the frames, you can use this menu option to view
either the actual content of the frame, or a short description of the frame
content. For example, instead of an actual Web page appearing in a frame,
the frame contains text such as:

Content type: URL

Content value: http://www.ibm.com/

Now we can change some of the layout in the framesets. We use BorderFrame
Frameset in the TeamRoom database, as shown in Figure 8-15.

1. Open Designer - Framesets - BorderFrame.

Figure 8-15 BorderFrame in Designer

– You can preview the frameset in the Notes client by selecting Frame -
Preview in Notes, or by using the Toolbar button Notes Preview; see
Figure 8-16 on page 298.
 Chapter 8. Domino Design elements: framesets 297

Figure 8-16 FrameBorder Frameset in Notes 6 client

– You can preview a frameset in a browser by selecting Frame - Preview in
Web Browser and selecting the browser of your choice, or by using the
Toolbar buttons for each browser.
298 Domino Designer 6: A Developer’s Handbook

Figure 8-17 BorderFrame in Web browser

2. Now you can create a new frame in the frameset. In Designer, select the
frame you want split.

– Click the Split into Row button; now you have the new frame.

– Open Frame Properties. Add your frame information (in this example, we
will use a Web page):

• Content Type - URL
• Content Value - http://www.ibm.com/redbooks

Figure 8-18 on page 300 shows the frameset after the split.
 Chapter 8. Domino Design elements: framesets 299

Figure 8-18 Frameset after splitting a frame in Designer client

– You can preview the new frameset in the Notes client by selecting Frame -
Preview in Notes, or by using the Toolbar button Preview Notes; see
Figure 8-19 on page 301.
300 Domino Designer 6: A Developer’s Handbook

Figure 8-19 Notes client

– You can preview the new frameset in a browser by selecting Frame -
Preview in Web Browser and selecting the browser of your choice, or use
the Toolbar button for your preferred browser; see Figure 8-20 on
page 302.

Tip: One frame of a frameset may contain another frameset that you design
separately. This can be useful, for instance, if you don’t want the same border
width on all frames.
 Chapter 8. Domino Design elements: framesets 301

Figure 8-20 Web browser

8.3 New features in Domino Designer 6
� Collapsible

� Captionable

These features are covered in this chapter, as well as in Chapter 12, “New
features in Domino 6” on page 347.

8.4 Summary
This chapter explains the main features available to application developers when
creating framesets in a Notes/Domino application.
302 Domino Designer 6: A Developer’s Handbook

Chapter 9. Domino Design elements:
outlines

In this chapter, we explain the use of the outline element.

Outlines, like imagemaps and navigators, provide a way for users to navigate an
application. However, unlike imagemaps or navigators, outlines let you maintain a
navigational structure in only one place. As your site (or application) changes,
you make only one change—in the source outline. Each navigational structure
that uses that outline source will be dynamically updated.

9

© Copyright IBM Corp. 2002. All rights reserved. 303

9.1 Outline Designer
You can create an outline that lets users navigate to the views and folders in your
database, perform actions, or link to other elements or URLs outside of your
application. You can create an outline that navigates through your entire
application or site, or through part of it.

Once you create the source outline, you embed it on a page or form to create an
outline control. This displays it to users as a site map or navigational structure.
Users can click the outline entries to take them where you want them to go.

With an outline, you can create a logical structure just once and then use it in
multiple places, specifying the appearance at the place you use it. For instance,
the same outline might be displayed on your home page in a vertical
configuration—or, in other pages—horizontally, across the top.

When you create a new outline, the work area looks as shown in Figure 9-1.

Figure 9-1 The Outline work pane
304 Domino Designer 6: A Developer’s Handbook

The Outline Design work area consists of buttons, the Outline view, and the work
area. We describe each of these items in the following sections.

Buttons
New Entry
You can add a new entry to your outline. When you click this button, the new
entry InfoBox is displayed; see Figure 9-2.

Figure 9-2 Outline Entry properties box

In the Info tab, you can set the following:

� The Entry in the Label field. This is shown to users, so make it as descriptive
as possible.

� The Popup field. This allows you to type pop-up text that you want to appear.
Popup text appears if the window is not wide enough to display the entire
label and the user moves the mouse over the outline entry.

� An Alias for the Outline entry. We recommend that you use alias, because this
is the name you will use, should you need to refer to that outline entry.
Specifying an alias enables you to leave your code unmodified if, for example,
the user requests having the name of the Outline entry changed—or, in a
multilingual application—it enables you to refer to an entry without to knowing
what language is being used.

� The Type field. This allows you to select the Link type. The available options
are Action, Link, Named Element, and URL.

If you select Action as type, an icon will be shown to enter the formula;
otherwise, if you select Link or Named Element as type, a new field appears
 Chapter 9. Domino Design elements: outlines 305

that allows you to specify in more detail what you are linking (page, form,
database, and so on). This field gives you a combobox where all the available
elements are shown.

� The Value field. This is only used for online entries of the URL type. In this
field you type the URL address for this entry (or you can use a formula to
compute it dynamically).

� The target frame in which to display the link. This setting is optional. If
supplied, it overrides the default target specified for the frame containing the
outline.

� The Image value. This indicates which icon to display to the user, to the left of
the label value. Images are stored in the Image Resources part of a database.

� If you select Does not keep selection focus, then after a user clicks an entry,
the entry will not remain selected. Instead, the previously selected entry will
retain the focus.

� If you select Read only, users will only be able to read the outline entry (they
will not be able to edit it).

In the Hide When tab, you can programmatically set the Hide When conditions
for the outline entry.

Save Outline
This saves the outlines.

Use Outline
This creates a page and then displays a dialog list where you can select the
current outlines.

Generate Default Outline
This creates a default outline. This outline will be based on the folders and views
in the current database.

Note: In Designer 6, you can now specify the content of an Outline Entry
based on a formula. This is a really useful feature, because you can handle
different situations in the application while providing the user with the
appropriate information and application resources.

Tip: It is generally quicker to create a default outline first and then modify it,
rather than creating an outline by adding one entry at a time—but it all
depends on the number of entries you want in your outline.
306 Domino Designer 6: A Developer’s Handbook

Indent Entry
This enables you to indent the outlines. Outlines with indented entries can be
expanded and collapsed to drill down into long lists.

Outdent Entry
This enables you to outdent the entries.

Outline Pane
This is the place where you can modify your outlines by dragging and dropping
the entries from one place to another. You can also change the entry settings and
options by opening the Entry InfoBox.

Programmer’s Pane
This contains the Entries Events, so that you can dynamically generate their
values at runtime. The available events are:

� Label - You can name your Entry.

� Source - The element name specified in the outline entry.

� Frame - The frame name that should open.

� Image - The image from the Image Resource that you are using in front of the
entry.

� Hide When - This defines when the entry is displayed. @Userroles is often
used in the hide formulas. Use of individual user or group names is not
recommended, for ease of maintenance.

9.2 Creating a new outline
We now create a new entry that is linked to the page called WelcomePage in the
TeamRoom database. To create a new outline, follow these steps:

1. Open a database in Design mode.

2. Go to the Outline design view and click the New Outline button.

3. Click the Generate Default Outline button to generate a default outline,
including all views and folders inside the current database. The outline might
look as shown in Figure 9-3 on page 308.
 Chapter 9. Domino Design elements: outlines 307

Figure 9-3 Generate Default Outline action results

4. Add a new entry by using the New Entry button.

5. Name the entry (for example: Help Page).

6. Link the page by selecting Named Element in the Type field, selecting Page
in the Kind field, and adding the page name, HelpMission, in the Value field.

7. When you have inserted all of the required information, the entry InfoBox
should look similar to Figure 9-4 on page 309.
308 Domino Designer 6: A Developer’s Handbook

Figure 9-4 The Outline Entry properties

8. Save the outline.

To delete the entry, right-click and select Clear, or mark the entry and press your
Delete key.

9.3 Embedded Outline
The Embedded Outline is one of the embedded elements in Domino Designer,
and it allows you to insert the outlines into your form, subform, page, or rich text
field.

After you have inserted the outlines into some of these design elements, you do
not need to reinsert or modify the current page if you make any changes to the
outlines; Domino already has this capability. This can save time when
maintaining your application.

To insert the outlines, do the following:

1. Create a new page, or go to the existing page.
2. Move your cursor to where you want to insert the outline.

Note: You can always come back and modify each of the entries by
opening the InfoBox.
 Chapter 9. Domino Design elements: outlines 309

3. Choose Create -> Embedded Element -> Outline to insert the outline into
the page.

4. Choose an outline in the list, or insert an outline based on a formula; see
Figure 9-5.

Figure 9-5 Embedded Outline in a page

Embedded Outline InfoBox
The InfoBox is shown in Figure 9-6 on page 311.

Note: You can also insert the outline into a table or nested table; this gives you
more control over how the outline should look.

You can have tables with captions that show different outlines when the
different captions are clicked; this gives you both a more dynamic outline—and
enables you to have much more information and navigation in a small area
(captionable tables do not take up much place, so by adding outlines inside
these tables, you can have several, large navigation structures in a rather
small area).
310 Domino Designer 6: A Developer’s Handbook

Figure 9-6 Embedded Outline properties box

Let’s see what outline entries look like in different clients when you change their
appearance. Following are some of the features that you can control from this
InfoBox.

Info tab
Using the Info tab, you can identify your outlines by name. Furthermore, you can
set the following:

� Type - Tree or Flat. This setting allows you to decide whether or not to show
the hierarchy of the Outline. Tree style shows all of the outline entries in the
hierarchy, while Flat shows only one level at a time. Use the Flat style
selection in conjunction with the Title style setting.

If you choose Flat Style, you have the option of displaying the outline vertically
or horizontally. Display horizontally displays entries to fit the window across,
instead of down.

� Title style - Hide or Simple. These settings work in conjunction with the Type:
Flat Style setting. In a Flat style outline, Simple style lets users navigate back
up to prior levels by displaying the parent of the current level in a flat outline.

Hide style does not display any hierarchy, so once users go down a level in
the outline, they cannot navigate back up.

� Target frame - Specify the frame where you want the links in the outline to be
opened.
 Chapter 9. Domino Design elements: outlines 311

� Twisties - To display a triangle that users click to see outline entries, check
Show twisties. You can specify an twistie image. Click the folder icon to select
a shared image resource. (Optional) Click the @ button to use a formula to
control the image display.

� Root entry - Defining a root entry will show the children of the specified entry
only. This can be used as a way to restrict users' access to elements in your
site or database.

Specify a root by using the alias of the parent entry. For example, if a parent
entry has an alias of “Main”, then enter: Main in the Root entry box and only
that entry's children will display in the outline initially. If the specified entry
does not have any children, then nothing will display in the outline.

If you want to give users a way to navigate back up the hierarchy from the root
entry's children, enable Simple as the Title style for either a Tree or Flat
outline. If you want to limit users' access to those children entries only, set the
root, and do not enable a Title style.

� Outline size

Width

– To specify the width of an embedded outline as a percentage of the parent
window, choose Fit to window (%).

– To specify the width in inches of an embedded outline, choose Fixed
(Size).

– To allow automatic sizing of an outline based on its content (for example,
the number of entries and whether or not the entries are expanded or
collapsed), choose Fit to content.

– To specify the width as approximately the specified number of characters
based on the average character width of the specified font, choose Fixed
(Chars).

Height

– To specify the height in inches of an embedded outline, choose Fixed
(Size).

– To allow automatic sizing of an outline based on its content (for example,
the number of entries and whether or not the entries are expanded or
collapsed), choose Fit to content.

– To allow automatic sizing of the height of an outline based on the size of
the window that the outline is displayed in regardless of its content, choose
Fit to window.
312 Domino Designer 6: A Developer’s Handbook

Show scroll bar

– To display a scroll bar if the embedded outline entries do not fit on the
screen, check Show scroll bar.

� Web access - select HTML or a Java applet to display an embedded outline to
Web users.

Figure 9-7 Embedded outline style samples

Font tab
This tab allows you to specify the font type, style, color, and size for the Top-level
font and the Sub-level font.

Background tab
This tab allows you to specify a color or an image to the background of the
Top-level font and Sub-level font of the outline.

Layout tab
This tab enables you to customize the spacing and alignment of the outline
entries, images, and background. The Layout tab is shown in Figure 9-8 on
page 314.

Note: The Outline Java applet is not accessible for visually impaired users
using screen reader software. You should provide a page that displays the
outline in HTML as an alternative for screen reader users.

Flat style and Tree style and Tree style and
Title style simpleTitle style hideTitle style hide
 Chapter 9. Domino Design elements: outlines 313

Figure 9-8 Layout tab

Each setting has its picture showing what you are changing. There are three
main settings to set:

� Entry

– Which is the entry itself, not the content of the outline entry.

You can adjust the settings for height and offset.

� Entry label

– Which is the entry content, the exact label of the outline entry.

You can adjust the settings for offset, as well as set the alignment of the
outline entry.

� Entry image

– Which is the entry image, if the outline entry has this property turned on.

You can adjust the settings for offset, as well as set the alignment of the
outline entry.

Hide When tab
Use this tab to specify the conditions to hide the embedded outline. You can
explicitly hide for some clients (Lotus Notes, web browsers, mobile), or use a
formula to do it.

Tip: Notice the Top-Level Layout button, as well as the Set All to Same button.
You can have different settings for the different levels of your outline entries.

Top-Level can have one “offset setting” set, while Sub-Levels can have others.
If you want to apply the same setting for all levels, click the Set All to Same
button.
314 Domino Designer 6: A Developer’s Handbook

Let’s check the final results of an embedded outline in a page, both in the Lotus
Notes client and in the Web browser. This page, shown in Figure 9-7, is in a
frameset.

Figure 9-9 Embedded Outline in a page, displayed in a frameset

Lotus Notes client

Web browser
 Chapter 9. Domino Design elements: outlines 315

316 Domino Designer 6: A Developer’s Handbook

Chapter 10. Domino design elements:
shared resources

In this chapter, we describe “shared resources”, which are new in Domino 6;
what they are, and when and how to use them. In summary, these elements are:

� Images

� Files

� Applets

� Style Sheets

� Data Connections

Shared resources help you control and manage your applications more easily
because you can store them within resources and then share these elements,
rather than copy and paste the images or applets into several different locations.

Before reading this chapter, you should be familiar with the functions described in
Chapter 4, “Domino Design elements: forms” on page 75, where we describe
how to create and use various elements in a form. Also see 12.3.1, “Shared
Resources” on page 365 for more information about shared resources.

10
© Copyright IBM Corp. 2002. All rights reserved. 317

10.1 Images
The image resource allows you to store all of the images that you are using in
your database. This is a very useful feature because the database can now
contain all the pictures that it needs and you don’t need to worry about sending
all the images along with an application when you send it to another server, for
example.

Use an image resource in preference to pasting or importing an image onto
several forms or pages. This saves space, improves performance by letting the
client cache the image, and eases maintenance if you need to change it by
having the picture stored in just one place.

Creating an image resource
To create an image resource:

1. Open the database in Design mode.

2. From the shared resources design, click New Image Resource in the view
pane.

3. Select your image, and click Open.

When the image is inserted in the view pane, it should look like Figure 10-1.

Figure 10-1 New image resource added to Shared Resources

4. You can specify your image by opening the property box of the added image
resource, and entering the alias name and comments for that image.

Open an image resource
1. In the shared image resources work pane, highlight the image that you want

to open.

Note: Domino 6 supports .GIF, .JPEG, and .BMP graphics files.
318 Domino Designer 6: A Developer’s Handbook

2. To allow Designer to select the application for opening the image resource,
click Open File.

Or:

To select the application for opening the image resource, click Open With.

3. You can now edit the file.

Refresh an image resource
When you have edited an image resource, you most probably want to save the
updates to the database as well. An image resource that has been edited but not
yet refreshed is identified in two places:

� In the shared images work pane, the file name is preceded by a refresh icon.

� In the shared image properties box, the “Needs refresh” check box is
selected.

To refresh a shared image resource, perform these three steps:

1. In the shared images work pane, highlight the image resource that you have
edited.

2. Click Refresh.

3. In the Open dialog box, select the updated file name and click Open.

The file resource is now refreshed. The refresh icon disappears from the files
work pane and the "Needs refresh" check box in the File Resource properties
box is cleared.

Adding the image to your form
Next, place the image that you have created onto the form.

1. In the database design, go to the Forms design view.

2. Click New Forms in the view pane or select an already existing form to add
the image resource to.

3. Go to Create - Image Resources in the Main menu or go to Create - Insert
Resource.

Tip: The edited image must still be open in the program where you edited the
image to complete the refresh.
 Chapter 10. Domino design elements: shared resources 319

4. Select the Image that you want to insert.

5. Click OK.

6. The image is now inserted into the form.

7. Save the form.

In some contexts, you need a set of related images. For instance, a button
graphic might need a normal, mouse-over and clicked state, or an icon may need
to appear in three different sizes. To support these uses, image resources let you
define an “image well” in the properties box of the image resource. You can
specify that your graphic actually contains multiple images across or down, and
how many. Depending on how the image is used, Notes displays only the portion
that applies to the current situation.

Creating a horizontal image resource set
1. In a graphics program, copy and modify an image to create a series of images

in different states. All of the images must be the same size.

2. In a single GIF, BMP, or JPG file, line up the images horizontally and separate
them with a one-pixel-wide well or line.

3. Create an image resource from the graphic file, as described in “Creating an
image resource” on page 318.

4. Double-click the image resource in the list of image resources in the Work
pane.

5. On the Basics tab of the Image Resource Properties box, enter the number of
images across in “Images across”. This is shown in Figure 10-2 on page 321.

Note: “Create - Insert Resource” is a new Domino 6 feature that lets you
choose among all the shared resources available, not only shared images.
Independent of which method you use, you can now use another new
feature in Domino 6 that enables you to insert shared resources from any
database available, not only from the current database.

Tip: You can preview the form by choosing Design - Preview in Notes or using
the toolbar icon for previewing in the Notes client.
320 Domino Designer 6: A Developer’s Handbook

Figure 10-2 Image resource - horizontal set

The number of images corresponds to the number of states you are using.
The four images map to the four states as follows:

Table 10-1 Image Resource set

Figure 10-2 is taken from the bookmark.nsf database. It is used on the Welcome
page when you select and do a mouse-over on the mail icon for opening your
mail file.

You can also create a vertical image resource set, similar to the horizontal set.
The same rules apply, but they have different targets for using them.

When to use horizontal and vertical image resource sets
Use a horizontal image set to create an image that appears to change depending
on its state. For example, when a user passes the mouse over an image, you

Images across State Position

1 Normal image First position

2 Mouse-over image Second position

3 Selected image Third position

4 Mouse-down image Fourth position

Tip: The order of the states is predetermined and cannot be changed.
However, if you want to take advantage of only two of the states—for example,
if you want to use a different image in the normal state (the first position)
only—copy the second image two or three times so that the different image is
in the first position.
 Chapter 10. Domino design elements: shared resources 321

might want it to appear to light up. To effect this, create a second image in the set
and adjust the background color of the graphic. You may also want the image to
appear to get darker as the user clicks on it, and dimmer once it has been
clicked.

Use a vertical image set for icons you are adding to the bookmark bar on the
Notes, Designer, and Administration client. The bookmark bar can display small,
medium, or large icons provided that the image resources for those icons are
part of a vertical image set. A vertical image set includes an icon in three different
sizes. To set the size for icons on the bookmark bar, users choose File -> User
Preferences. At the "Bookmark icon size" setting on the Basics page, they can
choose Small, Medium, or Large.

For more information on how to create a vertical image resource set, refer to the
Lotus Domino Designer 6 Help database.

10.2 Files
Designer allows you to share non-NSF files within and across databases. This
capability gives you greater flexibility in designing your application. For example,
you might need to reference a shared company logo that is a GIF file, or all
applications in your company might share a Welcome page that is an HTML file,
created by and maintained in another tool by a non-Notes developer. Other uses
might be scripting files, such as JSP or CGI.

An example is described in “Example of the use of files as shared resources” on
page 324.

Create a shared file resource
1. On the Design pane, click Shared Resources.

2. Click Files.
The files work pane opens.

3. Click New File Resource.

4. Select the file or files you want to share.

5. Choose Resource -> Resource Properties to see the properties of the file.

Note: This feature is new in Domino 6.
322 Domino Designer 6: A Developer’s Handbook

Using the file resource
The file resource—just like images, stylesheets and JavaScript—can be included
on a form/subform or a page. This is done by using Create -> Resource ->
Insert Resource on the element where you want to include it, and choosing the
Resource of your choice. This is similar to how we include other shared
resources.

Open a shared file resource
1. In the files work pane, highlight the file resource that you want to open.

2. To allow Designer to select the application to open the file resource, click
Open File.

Or:

To select the application for opening the file resource, click Open With.

3. You can now edit the file.

Refresh a shared file resource
When you have edited a file resource, you most probably want to save the
updates to the database as well. A file resource that has been edited but not yet
refreshed is identified in two places:

� In the files work pane, the file name is preceded by a refresh icon.

� In the File Resource properties box, the “Needs refresh” check box is selected

To refresh a file resource, perform these three steps:

1. In the files work pane, highlight the file resource that you have edited.

2. Click Refresh.

3. In the Open dialog box, select the updated file name and click Open.

The file resource is now refreshed. The refresh icon disappears from the files
work pane and the "Needs refresh" check box in the File Resource properties
box is cleared.

Note: There is a checkbox named “Needs refresh”. This might be confusing. It
is not a checkbox that you should check. It just tells you that the original file
has been edited, and that your shared resource needs to be refreshed. This
can be done using Refresh in the Files view.

Note: You can refresh a file resource even if Domino Designer does not think it
needs it.
 Chapter 10. Domino design elements: shared resources 323

Exporting shared file resources
Using the new Domino 6 feature and action button in the shared file resource
view, you can easily export your resources, as follows:

1. Select the resource to be exported.

2. Click Export.

3. Select a directory to export the resource to, as well as a file name.

4. Click Save.

Example of the use of files as shared resources
In this example, we include an HTML file on a form, and this file is the only
content on the form.

We insert an HTML file named External HTML File.html in the Files of Shared
Resources. This will look as in Figure 10-3.

Figure 10-3 HTML file as Shared Resource

The content of this HTML file is shown in Example 10-1.

Example 10-1 The HTML file content

<html>
<head>
<title>This is an external html file</title>

Tip: If a shared resource is preceded by a refresh icon, and you don’t want to
refresh it, or remove the refresh icon, just uncheck the “Needs refresh” check
box from the property box of the shared resource.
324 Domino Designer 6: A Developer’s Handbook

</head>

<body>
This is the content of the html file
</body>

</html>

So, how can we use this shared resource? One example would be to include this
HTML file on a form and let it be the content of the form.

1. Open the form where you want the HTML file included in the Designer client.

2. Place the cursor where you want the resource to be included

3. Go to Create Resource - Insert Resource or right-click with your mouse, and
select Insert Resource.

4. Select the Resource type HTML Files.

5. Choose the HTML file External HTML File.html and click OK.

6. You will have an icon on your form indicating that a File resource has been
inserted, as shown in Figure 10-4.

Figure 10-4 HTML file inserted in a form

If we now preview this form on the Web, the content of the HTML file will be the
content of what we see on the Web. This is shown in Figure 10-5 on page 326.
 Chapter 10. Domino design elements: shared resources 325

Figure 10-5 Form with an HTML file shown in a browser

Let’s take a look at the source code for this Web page, shown in Figure 10-6 on
page 327.
326 Domino Designer 6: A Developer’s Handbook

Figure 10-6 Source of the form with HTML file

As we can see in Figure 10-6, Domino generates a lot of HTML code and tags.
The HTML file that was inserted into the form is not the only content of the form.

If you want the HTML file to be the only content of the form, without
Domino-generated code, make sure you switch on the form property “Content
type: HTML” shown in Figure 10-7 on page 328.
 Chapter 10. Domino design elements: shared resources 327

Figure 10-7 Setting the content type on the form

This tells Domino that it should not generate Domino-specific HTML data, but
treat the form as pure HTML.

When previewing the same form for the Web now, it will look the same, as shown
in Figure 10-5 on page 326, but the source is different, as shown in Figure 10-8
on page 329.
328 Domino Designer 6: A Developer’s Handbook

Figure 10-8 New source with content type HTML

Taking the example one step further
So why would we want to include an HTML file as the content, or part of the
content, on a form or similar design element? Well, there might be several
reasons. One situation could be that you still have a lot of HTML files that you
would like to use, but you would like to use them as part of your existing forms
and pages. Using the above example lets you include HTML files as part of a
larger form, and have several HTML files create a Web page. And you can also
include other kinds of information on this form/page/subform using other design
elements. This could be an embedded view, lookups, and other Domino
Designer elements and technologies.

And, with a WebDAV-enabled Domino 6 server, you can also let other people
maintain these HTML files, from other application development tools, and save
them directly into the .nsf file on the Domino server. For more information on
WebDAV, refer to 12.22, “WebDav” on page 490.

10.3 Applets
Java applets that you are using in many places can be added to a shared
resource. Then, if you make any changes to the applet later, you only need to

Important: If you preview the form with the ?Openform parameter, you will get
the message Error 500 - HTTP Web Server: Application Exception -
Documents treated as HTML cannot be edited. Change your URL to use
?Readform instead.
 Chapter 10. Domino design elements: shared resources 329

copy the revised applet into one place, and applications that use the applet will
then have access to it.

10.4 Style sheets
CSS or cascading style sheets give you the ability to control many aspects of
your page layout, including headers, links, text, fonts, styles, color, and margins.
You can browse your local file system for a CSS, turn it into a shared resource,
and then insert it into a page, form, or subform.

For more information about cascading style sheets, visit W3.org’s site at:

http://www.w3.org/Style/CSS/.

Create a new style sheet resource
1. Expand Shared Resources in the Design pane.

2. Select Style Sheets from the list of resources; see Figure 10-9 on page 331.

3. Click New Style Sheet Resource. The Browse dialog box opens. Only files
with a CSS extension appear.

4. Find and select the cascading style sheet you want to use.

5. Click Open to add the style sheet to the list of style sheet resources. The
Style Sheet Resource Properties box opens, so you can change the name or
other properties of the style sheet.

Note: This feature is new in Domino 6.
330 Domino Designer 6: A Developer’s Handbook

Figure 10-9 Style Sheets design element

Insert a style sheet resource into a page, form, or subform
1. Open a page, form, or subform.

2. Place the cursor where you want to add the style sheet.

3. Choose Create -> Insert Resource. The Insert Resource dialog box
appears; see Figure 10-10 on page 332 and Figure 10-11 on page 332.
 Chapter 10. Domino design elements: shared resources 331

Figure 10-10 Inserting a Style sheet into a form directly

Figure 10-11 Choosing the resource to insert

4. Select the database containing the style sheet. The default is the current
database.
332 Domino Designer 6: A Developer’s Handbook

5. Because a form can have several resources, like JavaScript and HTML files,
you need to select what type of resource to insert. Select Style Sheets.

6. In the Available resources section, highlight the style sheet resource to add.

7. Click OK.

Figure 10-12 Style sheet inserted

8. (Optional) To view the name of the inserted style sheet resource or to change
to another style sheet resource, choose Style Sheet -> Style Sheet
Properties. The Style Sheet Properties box appears with the name of the
style sheet resource. To select a different style sheet resource, click the
Locate Object folder.

The use of style sheets on forms and pages does not work directly in
pass-through HTML code. Style sheet resources apply styles directly to some
Notes elements, and these elements are well documented in Lotus Domino
Designer 6 Help; see “Creating style sheets as shared resources” for details.

Notes elements that support style sheet resources are

� Document
� Paragraph
� List item
� Layer
� Table
� Table cell
� Image

Fields do not directly support style sheet resources. Field content will inherit
styles for an inheritable property. For Web browsers, these style sheets will apply
as usual.

Tip: You can also insert the style sheet resource directly into the HTML Head
Content of your form. Select HTML Head Content, right-click in the
programmer’s pane, and select Insert Resource. Notice that the dialog box is
context sensitive. Select the style sheet resource to be included, and click OK.
 Chapter 10. Domino design elements: shared resources 333

Opening and editing style sheet resources
You can open and edit style sheet resources just as you open and edit shared file
resources:

� Select the style sheet resource to be opened and click Open, or optionally
Open with to select which program to open the resource with.

When you have edited a style sheet resource, you most probably want to save
the updates to the database as well. A file resource that has been edited but not
yet refreshed is identified in two places:

� In the files work pane, the file name is preceded by a refresh icon.

� In the File Resource properties box, the “Needs refresh” check box is
selected.

To refresh a style sheet resource, follow these three steps:

1. In the style sheets work pane, highlight the file resource that you have edited.

2. Click Refresh.

3. In the Open dialog box, select the updated file name (it is preceded by a tilde
(~)), and click Open.

The style sheet resource is now refreshed. The refresh icon disappears from the
work pane and the "Needs refresh" check box in the style sheet resource
properties box is cleared.

Export style sheet resources
Using the new Domino 6 feature and action button in the shared style sheet
resource view, you can easily export your resources:

1. Select the resource to be exported.

2. Click Export.

3. Select a directory to export the resource to, as well as a file name.

4. Click Save.

Note: This gives you the choice to use your favorite style sheet editor when
editing cascading style sheets.
334 Domino Designer 6: A Developer’s Handbook

10.5 Data connections

Many of the enhancements in Domino Designer 6 extend the properties-box
paradigm to make functions easier and more intuitive. One of the most powerful
is the creation of a Data Connector and linked fields that connect a form to an
external database. This brings a new ease to integrating Domino and relational
data sources.

Data Connection Resources (DCRs) bring the technology of Domino Enterprise
Connector Services (DECS) into Designer so that you can define a connection to
an external data source, such as a relational database, and use the connection
to link the fields in a form to fields in the external source. DCRs are reusable in
an application and can be shared across applications. You can use DCR
technology to access data in enterprise systems and then take advantage of the
power of a Domino application to replicate, share, secure, and manage the data.

To create an external connection, you first need to install the DECS server
software on your Domino server. The client software for the application you are
connecting to (such as DB2 or ODBC) must also be installed on the Domino
server. You can develop an application locally, but you will be unable to browse
the external metadata when designing your application.

To establish a connection with external resources, follow the steps described in
the topics that follow.

10.5.1 Create a data source resource
Before you can create and use a Data Connection Resource, you must first
create a data source server reference to the external application that is using a
data source that is defined on the server. For example, to create a data source
for a Microsoft Access database on a Windows NT server, you would use the
Windows System Tools utility to specify the Microsoft Access table as a data
source and ODBC as the data driver to use for data exchange.

If you do not have access to the server on which the external database resides,
work with your system administrator or database manager to make sure the data
source is defined.

Note: This feature is new in Domino 6.
 Chapter 10. Domino design elements: shared resources 335

10.5.2 Create the DCR
A Data Connection Resource (DCR) is a reusable connection between a Domino
application and a non-Domino database. You must have a defined data source
on the server before you can create a DCR.

Creating the Data Connection Resource
1. Launch Domino Designer.

2. In the Design pane, select Shared Resources -> Data Connections. Any
existing data connections display in the Work pane on the right.

3. Click New Data Connection at the top of the Work pane. The Data
Connection Properties box appears.

4. Enter a name for the connection resource.

5. (Optional) Enter an alias to use in place of the name.

6. (Optional) Enter a comment describing the connection.

7. Select the class of application you are connecting to, that is, the type of
database.

8. Select the type of connection. Certain databases, such as DB2 and Oracle,
have native drivers that are listed as an available type of connection. If a
specific driver is not available, choose a generic one, such as ODBC or OLE
DB. For example, to access an MS Access database, choose OLE DB as the
connection type.

9. Enter the username and password you use to access the system you are
connecting to.

10.Enter the name of the data source that maps to the external application you
plan to access.

11.(Sybase only) Enter the name of the server on which the database resides,
and the catalog name.

12.Select the type of object to connect to: table, view, or procedure.

13.Enter the User ID for the owner of the table or view. The owner is the creator
of the database you are connecting to. The owner must supply you with the
correct owner ID, which is typically in the format ownername.tablename. In
the case of a procedure, also enter the procedure name for any of the
document events that will trigger the procedure.

14.Enter the name of the table, view, or procedure. You can click Browse
Metadata to browse the external database for the name of the table, view, or
procedure.

15.(Optional) Click Options to customize the settings for the DCR.
336 Domino Designer 6: A Developer’s Handbook

10.5.3 Set a database property
In order to establish a connection to an external data source, you must first
enable external connections for the database. Once that database property is
set, you can then use your DCR in a form to exchange data with an external
database; see Figure 10-13.

1. Open the database where you plan to use a data connection and choose File
-> Database -> Properties.

2. Click Database Basics.

3. Select Allow connections to external databases using DCRs. This
property is disabled until you have created at least one DCR in the database.

Figure 10-13 Setting the database property

4. Close and reopen the database to enable the property.

Note: You may want to disable this while you are designing an application, and
enable it when you are ready to deploy your application.
 Chapter 10. Domino design elements: shared resources 337

10.5.4 Create fields on a form
If you are planning to use a DCR in more than one field on a form, you can
specify a default data connection, and, optionally, a default metadata object such
as a table or view. When you create a field for use with an external data source,
the default information for the data connection is supplied automatically. You can
overwrite the default DCR with a different DCR if you wish.

How to specify a default connection for a form
1. Create a form.

2. Choose Design -> Form Properties to display the Properties box.

3. Click Defaults (second tab).

4. In the Data Source Options section, you can browse for a data connection
resource or enter the name in the Default Data Connection field.

5. (Optional) Specify a Default metadata object, such as a table or view name,
from the external application.

How to create fields to connect using the DCR
1. Create a field.

2. Choose Design -> Field Properties to display the Field Properties box.

3. Click the Info tab and select "External data source." If you have specified a
default DCR for the form, the information is applied to the field.
338 Domino Designer 6: A Developer’s Handbook

Figure 10-14 New Domino 6 field properties for data connection

4. In the Data Source Options section (Figure 10-14), browse for, or enter, the
name for the metadata object and the corresponding external field. The type
of field in the metadata (for example, text or integer) is indicated by an icon.

Figure 10-15 Browsing external data sources
 Chapter 10. Domino design elements: shared resources 339

5. Specify an existing data connection resource.

6. Select Key field if this field corresponds to a field in the external application.
Every data connection requires a key field—the key field is the link between
the form and the backend database or application. Note that key fields are
always stored locally as well as on the backend.

7. (Optional)If you want data from fields other than the key field stored locally,
mark each of these fields as a Data field and select the Store locally option.
For these fields, data will be stored in the Domino database as well as in the
backend database. Changes you make in the Domino database are pushed
back to the backend database. If the backend changes, you can manually
refresh the Domino database by pressing F9 with the document open or by
closing and opening the document.

Important: Note that if you are developing an application locally, you will
not be able to browse external metadata.
340 Domino Designer 6: A Developer’s Handbook

Chapter 11. Developing for multiple
clients

When you develop in Notes/Domino, it is important to be aware that most
features you develop for the Notes client are directly available and compatible for
Web browsers. You don't need to double your work by coding twice the code.

It is, of course, a very common thing to customize certain design elements for the
Web, and for that reason develop and use programming languages for the Web.
This chapter is a “best practices” guide for developers developing for multiple
clients, with tips and suggestions of what to consider when developing in such
environments.

11
© Copyright IBM Corp. 2002. All rights reserved. 341

11.1 Plan your application
This is a situation where a little planning goes a long way. Before you start
coding, you should first define your audience and think about how the application
should work for both Notes and Web users. Regardless of how simple the
application is, you don't want to waste time porting a feature that wasn't worth
porting to begin with.

11.1.1 Security settings
Keep in mind that the ACL is not the only way to control access to a database,
when accessing it from the Web. The Basics section of the ACL lists the access
levels for individual users, groups, and servers. In addition, the Advanced section
specifies the maximum level of access allowed from the Web in the "Maximum
Internet name & password access" field, which overrides individual levels set in
the ACL. The LotusScript actions in your application may require Manager or
Designer access that is not allowed from the Web—meaning that sometimes not
all applications are appropriate for Web access.

Some features, such as encryption, are not available for Web or mobile users.
This means that you have to plan your application accordingly. For example, you
cannot utilize encryption as a means to secure the data using a Web browser. On
the other hand, data encrypted with Notes is also safe from Web and mobile
users.

11.1.2 Consider the use of graphics
When designing for the Web, people tend to think of graphics. However, if
performance is an issue, you might want to sacrifice the fancy graphics in favor of
better performance. There are several techniques, both using DHTML and CSS,
that can replace a lot of plain graphic elements, which again will increase your
application’s performance. Though there are caching features on the Domino
server to handle the use of graphics and make them faster to access, keep this in
mind: graphics might not be the most important thing in your application. The key,
in most cases, is the utility value.

Also keep in mind that when using graphics, you should use the shared
resources, and not paste graphics directly into a form. This saves space,
improves performance by letting the client cache the image, and eases
maintenance by having the picture stored in just one place should you need to
change it.
342 Lotus Domino 6 Application Development

11.1.3 Examine your LotusScript code
Ideally, you should try to share as much code as possible. Then, if you need to
modify the code in the future, you'll be able to make the changes all in one place.
(It will also help you keep the size of your application down.) Only the backend
classes are supported on the Web, so avoid using UI classes on your LotusScript
code and if you do use them, make a separate script library for Notes to access
frontend classes.

11.2 Designing the application
This section offers some guidelines about designing an application that will be
used by different clients.

11.2.1 Same or different forms for the Web and Notes
Since Web browsers and the Notes client are not identical in their capabilities,
you may often need to create different UI elements for the two clients. It might be
easier initially to design two separate forms, but that means that if you change
one form, the other form may also need to change, for consistency, so
maintenance is complicated. The situation is further complicated if your
application is multilingual, since you then can multiply those two forms by the
number of languages you plan to support. It's generally worth expending a little
effort and try to make one form work for both clients. Creative use of hide
properties and subforms, and careful selection of programming languages, can
make this easier.

The fact that JavaScript works in both clients means that it makes sense to write
input translation and validation in JavaScript as opposed to LotusScript or macro
language. Macro language field formulas work, but the Web browser doesn't
know macro language, so it has to submit the form to the server for evaluation.
Since JavaScript executes locally, it gives better performance—plus, it's easy to
place the cursor in the offending field, whereas with macro language validations
the user must view the message and then use the browser Back function to
return to the form.

If you do use separate Notes and Web forms, avoid duplicating business logic by
using JavaScript libraries that you can include both on the Web version and the
Notes version of the form (see “New library type” on page 350). Each form can
contain multiple script libraries, so if you are writing a multilingual application, you
can have a separate "message text" JavaScript library for each language, and a
single library of business logic that refers to the messages defined in the
"message text" library.
 Chapter 11. Developing for multiple clients 343

11.2.2 Choosing fields
Most of the fields work similarly for Notes and Web browsers. However, there are
differences. For example, there is no concept of dialog box fields on the Web. You
should use other types of multiple selection fields, such as check box or dialog
list, instead. Some of the field properties do not work on the Web either, as when
you want to allow a user to enter new values for a selection field. You have to
provide a way for Web users to do that.

11.2.3 Choosing actions
Remember, when developing applications for browsers, they do not have access
to the Notes menu commands. They will not have the chance of forwarding a
document, for example. To Web-enable all buttons in a database as well as
certain @commands, select the database property "Web access: Use JavaScript
when generating pages." Without this property set, Domino recognizes only the
first button in a document and treats it by default as a Submit button that closes
and saves the document. Be aware that when you select this Use JavaScript
property, Domino displays all buttons, actions, and hotspots—even those that
contain @commands and @functions that are not supported for Web
applications. These functions are executed by submitting the form to the server,
which calculates the resulting Web page.

11.2.4 How to deal with the Notes views
Although your Notes views will appear OK on the Web, you will lose the
attractive, three-paned layout of the Notes interface. You can translate this layout
to the Web by using the Frameset design element, or by embedding outlines,
views and other elements on a form or page.

However, another option is that you can embed views, folders, or navigators on a
form to create a "frame" effect that helps Web users navigate through your
application. The way this works is that you create a form called "$$ViewTemplate
for ViewName." Then, when a user tries to open the view called ViewName,
Domino displays the view template instead. If you don't use a $$ViewTemplate
form, you may not get the desired display of the view.

11.2.5 Need of miscellaneous forms
One final area to consider when designing forms is that Web users don't have
access to standard Notes dialogs, such as error dialogs or help dialogs. The new
$$Return pages allow you to design customized pages for returning errors to
Web users. You should also consider the use of the
$$ReturnAuthenticationFailure form to display an error message to Web users
344 Lotus Domino 6 Application Development

when there is an authentication failure and the $$ReturnDocumentDeleted form
to display sensible error messages to users when the document deletion has
been successful. Use $$ReturnGeneralError to display an informative page
instead of the default error page when an error occurs.

11.2.6 Designing the agents
As with any Notes or Web application, agents do most of the work. The number
of agents in your application should not affect performance. Obviously, adding a
WebQueryOpen agent to a form will certainly make it take longer to open the
document (because Domino must run the agent prior to opening the document).
The key is to make the agent perform a few key tasks, and if you need to do
complex processing, use a background agent. In some cases, you might be able
to use existing code in a PostOpen event of a form directly in a WebQueryOpen
agent, so the work is minimized. When doing this, make sure that you have the
correct document context for the Web agent.

More specifically, you can get to the existing backend document from a
WebQueryOpen or WebQuerySave agent, or by using
@Command([ToolsRunMacro]) from a document action by using the
NotesSession DocumentContext property. However, if you are executing a Web
agent from a hotspot on the form via @URLOpen, you don't have access to the
fields on the document (other than CGI fields such as remote_user). Generally,
you should use @URLOpen when you need to pass an argument to the agent or
when you are deleting the current document. The way to get the real backend
document from the @URLOpen context is to pass the UNID of the document as
an argument to the agent, as shown in the following call:

UNID:=@Text(@DocumentUniqueID);
dbPath := @WebDbName;
@URLOpen("/" +dbPath + "/agnWeb?OpenAgent&UNID="+UNID)

Then, access the UNID from within the agent:

set note = session.documentcontext
OriginalUNID = Mid(note.Query_String(0), Instr(note.Query_String(0),
"&UNID=")+6, 32)

11.2.7 Be aware of multiple lookups
You usually don't think about multiple lookups when developing in a pure
Notes/Domino environment with only Notes clients. Including multiple lookups in
your application may slow it down. Be aware of using lookups like the following:

� Computed subforms
� Embedded views
� Computed fields
 Chapter 11. Developing for multiple clients 345

Lookups take time, and might slow your application accessing it from a Web
browser. Often it is very convenient to use subforms, because you benefit
dividing the code into "sections", which makes maintenance easier. Complex
applications, with multiple computed lookups, should be used with care. Also
make sure that you check your lookups for errors. If a lookup fails, make sure you
return something to the client or tell the lookup to continue, with an empty result
set.

11.2.8 Developing for PDA and mobile clients
Lotus is the market leader in providing messaging, personal information
management, and collaborative applications in the enterprise. These provide a
full range of mobile and wireless solutions for Domino as part of the strategy to
provide users with the most robust and pervasive messaging and collaborative
environment. To enable your applications for PDA and mobile clients, refer to the
redbook Lotus Mobile and Wireless Solutions.

11.3 Take advantage of Domino 6
Domino 6 comes with a lot of new features, and you should be aware of these.

For example, while we usually used pages or forms for JavaScript repositories, or
maybe added them directly to the JS header of a form, we can now add our
JavaScripts to the new script library for JavaScript. Then we can add these
libraries directly on to a form or inside the JS header of the form.

These JavaScripts can now be rendered and run in the Notes client, as well. For
example, this allows us to have one set of field validation, only using JavaScript,
instead of both JavaScript and @formulas, if desirable. In other words, "write
once—use in many clients".

Another benefit one should consider is the use of another shared resource:
cascading style sheets. These can also be rendered and used in Notes clients as
well as Web browsers, and are included and handled in the same way the
JavaScript resource is. You can now include it directly on a form, as a shared
resource, and use that resource for multiple clients.

11.4 Conclusion
Such a “best practice” guide could have been a redbook itself, but this should
help you get started. Because each application is unique, you may have
additional issues when you begin Web-enabling your application.
346 Lotus Domino 6 Application Development

Chapter 12. New features in Domino 6

This chapter describes the new features in Lotus Domino 6 and Domino
Designer 6. Domino 6 contains several new features for administrators,
application developers and end users. This chapter focuses on the new features
provided to the application developer.

We also offer some tips and tricks based on experience developing in Domino 6.

The purpose of many of the new features in Domino Designer 6 is to reduce the
time spent on developing a Domino 6 application.

With Domino Designer 6 you can build applications for use with Lotus Notes
clients, Web browsers, and Mobile clients.

12
© Copyright IBM Corp. 2002. All rights reserved. 347

12.1 User interface
The user interface of Domino Designer 6 has been greatly improved. The client
now supports features and includes tools that will reduce your application
development time and ease your daily developing tasks.

12.1.1 New design element navigator
The design element navigator, that is, the list of design elements and its
appearance, has been refreshed and reorganized. Figure 12-1 shows what it
now looks like.

Figure 12-1 New design navigator in Domino Designer 6

Reorganized
There are several new design elements as well as quite a few reorganized
elements in the navigator. As mentioned in 12.1.6, “Plus/minus indicators for the
design list” on page 355, Domino Designer 6 now includes plus/minus indicators
to show that there are elements under that design element category.

In Figure 12-1, you can see that no folders have been created yet, but there are
pages, forms, and views in the database. If we click these plus/minus indicators,
they will respectively expand and collapse, and show a list of the created
elements directly in the design element navigator, as explained in 12.1.6,
“Plus/minus indicators for the design list” on page 355.

Outlines or agents are not design elements that you will find directly in the design
element navigator—in contrast to forms, views, folders, pages and framesets.
Outlines are moved out of this list in Domino Designer 6, and moved into a new
container called Shared Code, which is explained in more detail in 12.3, “New
Domino 6 design elements” on page 365.
348 Domino Designer 6: A Developer’s Handbook

You can no longer find Navigator as a part of the design element navigator, as
this also is moved. It can be found in Other, which is a container in the design
navigator list. You are not likely to use navigators in your applications.

New containers
The two new design element containers in the design element navigator are:

� Shared resources

� Shared rode

This is rather a development from Domino R5 than a new feature or a new way of
thinking. The thought behind shared resources and shared code is very practical.
For example, the shared code container contains all the code that can or should
be reused in your application, or by other applications.

The Shared Code container contains the following design element types:

� Outlines
� Agents
� Subforms
� Shared fields
� Shared actions
� Script libraries

The attribute these all have in common is that they should or can be reused.

Shared resources contain elements that could be described as resources and
static resource elements. The element types are:

� Images
� Files
� Applets
� Style sheets
� Data connections

Sharing elements lets you reference a resource repeatedly throughout an
application, while only having to maintain it in one central place. For example, if
you use your company logo in many places throughout your application and the
design of your logo changes, you need only change it once, in the image
resource, and the change will be implemented everywhere that image is
referenced. This is common for both shared code and shared resources. They
are both elements that include resources you can reference throughout an
application. For more information about these containers, see 12.3, “New
Domino 6 design elements” on page 365.
 Chapter 12. New features in Domino 6 349

New library type
There is one new Script library available in Domino Designer 6: JavaScript.

You can now create and select which library you want to add directly from the
design work pane, by clicking your choice; see Figure 12-2.

Figure 12-2 Script libraries in Domino Designer 6

Insert a JavaScript library into a page, form or subform
1. Open a page, form, or subform.

2. Place the cursor where you want to add the JavaScript.

3. Choose Create -> Insert Resource. The Insert Resource dialog box
appears.

4. Select the database containing the JavaScript. The default is the current
database.

5. Select JavaScript libraries as the resource type.

6. In the Available resources section, highlight the JavaScript to add.

7. Click OK.

Note: There are now three script libraries in Domino 6: LotusScript,
JavaScript, and Java Libraries. All of these have their own action button in the
Script libraries design element view.

Tip: You can also insert the JavaScript directly into the JS Header of your
form. Select JS Header, right-click in the programmer’s pane, and select
Insert Resource. Notice that the dialog box is context sensitive. Select the
JavaScript to be included, and click OK.
350 Domino Designer 6: A Developer’s Handbook

12.1.2 Bookmarks
Using bookmarks and folders allows you the flexibility to organize your work
according to your needs, and to easily reorganize your work as your design
progresses.

There are several new features and enhancements to bookmark folders in
Domino Designer 6 that make it easier to bookmark both applications and
databases, create folders, manage bookmarks, and even copy single design
elements into folders (covered in 12.1.3, “Custom design element folders” on
page 352).

Bookmarking an application
You can now add your favorite applications or other files, such as HTML pages,
text files, or image files, directly on your Bookmark bar. Figure 12-3 shows how
Microsoft Internet Explorer has been added to the Bookmark bar so that it can be
easily launched from there.

Figure 12-3 Application as a bookmark

To create a bookmark to an application on the bookmark bar, drag an application
shortcut from your desktop or Windows Explorer directly to the bookmark bar.
You can also add the bookmark inside a folder by dropping the icon on top of the
folder.

Create a bookmark folder
The process of creating a folder in the Domino 6 Designer Client has been
changed. Click the icon for a new folder, as shown in Figure 12-4 on page 352.
 Chapter 12. New features in Domino 6 351

Figure 12-4 Creating a new folder

When using this new feature, you can also decide where this new folder should
be located, within your already existing folders; see Figure 12-5.

Figure 12-5 Location of a new folder

Organize the bookmarks
You can drag and drop your bookmarks into the folders you want. This feature
applies to drag and drop from the task bar and from folder to folder.

12.1.3 Custom design element folders
To make it even more rapid and easy to access and create database elements in
Domino 6, there is a new feature for grouping and managing design elements
from custom design element folders; see Figure 12-6 on page 353.
352 Domino Designer 6: A Developer’s Handbook

Figure 12-6 Custom design element folders

As you can see, there is a custom folder the container of other design elements,
called “My recent elements”. The name of the element can be set to whatever
you want. As a database grows, the number of design elements grows as well,
and you might be using only a few of these frequently. With custom design
element folders, you can add your most frequently used design elements to a
custom folder within your database element listing. This feature is also very
useful for team database development, enabling the design elements to be
grouped in personal folders.

Create a custom design element folder

1. Ensure that the database is already in a folder or you have added a bookmark
in the Bookmark bar.

2. Create a new folder.

3. Give the folder a name and select your database of choice in the “Select a
location for the new folder” window.

4. Click OK.

Note: The database in which you want to create a custom design element
folder must be located in a folder, or there has to be a bookmark in the
Bookmark bar for it. You cannot create a custom design element folder to a
database that is only listed in “Recent databases”.
 Chapter 12. New features in Domino 6 353

12.1.4 Mouseover information on design elements
Domino Designer 6 displays text on the window tabs when you mouseover the
tab.

In previous versions of Domino Designer, when you worked with several
elements and databases at once, you most likely had several window tabs open
at the same time. This could get confusing, and it might be hard to locate already
opened design elements.

With Domino Designer 6, these window tabs have a new feature, displaying text
above them on mouseover. Figure 12-7 shows an example of this. Notice that the
pop-up text shows the server, the full path, the name of the database, and the
name and type of the element.

Figure 12-7 Mouseover shows design element information

Using this feature makes it a whole lot easier to navigate among lots of window
tabs of design elements, because you can tell the difference between the
elements more easily.

12.1.5 Quick scroll
To be able to work faster and reduce the time spent on designing applications in
Domino 6, several new features were added. One of them is the ability to scroll
among your design elements directly in the list of design elements, without
opening the list of all design elements; see Figure 12-8 on page 355.
354 Domino Designer 6: A Developer’s Handbook

Figure 12-8 Quick scroll

12.1.6 Plus/minus indicators for the design list
There is now a new feature as part of the design element list: plus and minus
indicators. Clicking the plus sign expands the list of elements, and if the number
of elements exceeds 5, it also enables the quick scroll. Clicking the minus sign
collapses the elements list; see Figure 12-9.

Figure 12-9 Plus/minus indicators for design elements

Note: The arrows are only shown when the number of elements in the specific
design element exceeds 5. The first 5 are directly accessible.
 Chapter 12. New features in Domino 6 355

12.1.7 New features in design element views
In Domino Designer 6, all the design element views have been changed. You will
now get quite a bit more information displayed directly in the designer, which
makes it all both faster and easier to work with. You can, among all other
properties, now see which of your design elements, let us say forms, that should
prohibit design refresh or replace to modify. You will also see if a design element
has been hidden or made available for different clients directly in these views.
The views can also be sorted in different columns, as well as resized.

Some of the design element views also have action bars, which enable a
developer to take action directly on design elements in the design views. This is
covered in detail in 12.8, “Agent enhancements” on page 404.

12.1.8 Modifying properties for multiple elements
To save time, you can select multiple design elements and set their common
design properties at the same time. For example, you might want to prevent all of
the forms in your application from inheriting changes from a template, or hide a
collection of views from Web users or Mobile users. See Figure 12-10 on
page 357.

1. Select a bookmarked database or open a database in Designer.

2. In the Design pane, click the name of a design element (for example, Forms).
The names of all the design elements of the specified type appear in the Work
pane.

3. In the Work pane, select the name of a design element that you want to
modify, then hold down the Shift key and select other continuous elements
you want to modify, or hold down the Ctrl key and select the elements you
want to modify.

4. Choose Design -> Design Properties or click the Display Infobox icon on the
toolbar in the upper right corner of the Design pane.

Note: Design element types with no plus or minus indicators have no
elements inside. In Figure 12-9 on page 355, no framesets or folders have
been created in the database, while there are several forms, views and pages.
356 Domino Designer 6: A Developer’s Handbook

Figure 12-10 Selecting multiple elements and setting properties

5. The Design properties box shows only the properties that you can set for the
selected elements. The properties box displays initial values that are the
same for all selected design elements. Properties that are set differently for
different design elements display with a gray check.

6. Set properties for the selected elements. For example:

– Enter a template name to have the selected elements inherit from one
template.

– Check "Prohibit design refresh or replace to modify" to prevent the
selected elements from being modified during a design refresh or replace.

– If you use a template to refresh or replace the database design, then to
ensure that the option “Prohibit design refresh or replace to modify” takes
effect, select this option as well as the option “Propagate this prohibition of
design change” in the design properties of the template.
 Chapter 12. New features in Domino 6 357

– Hide the design elements from Web browsers, Notes clients, or Mobile
users.

12.1.9 Design element locking
Design element locking is a new feature designed to help teams work on a single
database. If you work on a team and want to ensure that other designers cannot
modify design elements that you are working with, you can explicitly lock them.
When you have finished working with the design elements and want to release
them so that others can modify them, unlock them.

Before you can start locking design elements, you have to enable this on your
specific database.

Enabling design element locking
Enable design element locking when you want to give designers the ability to lock
and unlock any of the design elements in a database.

1. Choose File -> Database -> Properties and click the Design tab.

Important:

� A design element that is not explicitly locked is always temporarily locked
while it is being edited. After the designer has finished editing it, the
temporary lock is released. Locking the element replicates to other servers
and also stays locked until it is manually unlocked.

� Shared Actions are contained in one design note. Therefore, when you lock
a Shared Action, you lock all Shared Actions. Likewise, when you unlock a
Shared Action, you unlock all Shared Actions.

Note: You need to specify a Master lock server for the database before setting
the design locking on. This is done by setting the Administration server for the
database, which you can set up on the Advanced properties tab of the Access
control list of your database.
358 Domino Designer 6: A Developer’s Handbook

Figure 12-11 Enabling a database for design locking

2. Select Allow design locking; see Figure 12-11.

Now designers can explicitly lock design elements in the database. The
column next to the design element name indicates the lock status of the
design element.

Locking a design element
Lock a design element when you want to ensure that you have exclusive
ownership of it and to prevent others from modifying it.

1. Highlight the design element or multiple elements in the Work pane.

2. Right-click and select Lock; see Figure 12-12 on page 360.

Attention: To enable a database for design locking, you need to specify a
Master Lock (Administration) server for the database. If you try to enable a
database for design locking without having this set, you will receive an error
message telling you to do this. You can set this setting in the Advanced Panel
of the Access Control Dialog.
 Chapter 12. New features in Domino 6 359

Figure 12-12 Locking a design element

If the design element was unlocked, a padlock icon appears in the Work pane
indicating that you have successfully locked the design element, and a
message appears on the status bar. You now have exclusive access to the
design element; other designers cannot modify it.

If someone else has locked the design element, a lock-and-key icon appears
in the Work pane. If you try to open a locked element, you will not be able to
save your modifications.

Unlocking a design element
Unlock a design element when you have finished making changes to it and want
to allow others to be able to modify it. You can only unlock design elements that
you have locked. Designers with Manager access to the database can unlock
any design element.

1. Highlight the design element or elements in the Work pane.

2. Right-click and select Unlock.

Attention: If you work locally or offline and attempt to lock a design element,
Designer displays the message Master lock database cannot be reached
and asks if you want to proceed with locking the design element. If you click
Yes to proceed, the database applies a provisional lock to the design element.
When you connect again and replicate, the database attempts to convert the
provisional lock to a true lock. If it is successful, the database saves the edits
that you made to the design element. If it is unsuccessful, the database sends
you mail containing the edits that the database could not save; you must apply
them manually to the design element.
360 Domino Designer 6: A Developer’s Handbook

If you had locked the design element, the padlock icon disappears in the Work
pane indicating that you have successfully unlocked the design element, and
a message appears on the status bar. You no longer have exclusive access to
the design element; other designers can now modify it.

Disabling design element locking
Disable design element locking when you want to prevent designers from
explicitly locking design elements in a database.

1. Choose File -> Database -> Properties and click the Design tab.

2. Deselect Allow design locking.

Now designers cannot explicitly lock design elements in the database.
However, a design element that is not explicitly locked is always temporarily
locked while it is being edited. After the designer has finished editing the
design element, the temporary lock is released.

12.1.10 Printing enhancements
There are new features in Domino 6 related to printing documents, code, and
other design element content.

Printing source code from the programmer’s pane
When you are in the programmer’s pane, you can now print your source code,
with a few alternatives and options.

Printer
Select the printer of your choice, and set the properties by clicking Printer.

Content
When you are in the designer client, and in a programmer’s pane, then these
options will be available when printing:

� Current section

This will print the current section you have in your programmer’s pane.

� Current objects

This will print the current object you are working on, and give you a second
option to include “All languages” or “Current language”. This means you are
able to print all events of the currently selected object.

� All objects

This will print all the code in all the objects on your current design element. It
will include the name of the objects, as well as the event of the codes.
 Chapter 12. New features in Domino 6 361

Figure 12-13 Printing code from programmer’s pane

12.1.11 Shading
Domino Designer 6 Client now uses shading to make it easier for you as a
developer to figure out which database the design element you are currently
working on belongs to; see Figure 12-14 on page 363.

Note: These settings and options are context sensitive. If you try to print
something from your Notes 6 Client, there will be new options available for the
end user as well. Among these is the possibility to select individual frames
when printing, and printing embedded views.
362 Domino Designer 6: A Developer’s Handbook

Figure 12-14 Use of shading to indicate active database

As we can see in Figure 12-14, the active database in the folder (or recent
databases) is shaded. If the background of a database is not shaded, then that is
the active database you are currently working in. A shaded background indicates
an inactive database.

12.2 Design Synopsis
The basics of this function are covered in 3.2, “Using Design Synopsis” on
page 71.

In Designer 6, there are some new features in Design Synopsis:

1. Hide-When

The Hide-When conditions are supported in Design Synopsis.

2. Customized reports

This is not really part of the Design Synopsis tool functionality; it is another
tool that can be used to produce a synopsis-like output. The biggest benefit of
 Chapter 12. New features in Domino 6 363

it is that you can create customized reports using the DXL Transformer utility.
This tool adds to the familiar Design Synopsis function. It allows you to output
all of your database design or selected elements and transform them by
applying a style sheet, and then either send the output to your display or write
it to an HTML file.

To open the DXL Transformer utility, select Tools -> DXL Utilities ->
Transformer. In this way you can choose the elements to display, the style
sheet you want to apply, and the output format you want. It is shown in
Figure 12-15.

Figure 12-15 DXL Transformer

In this example, several forms were selected from the left column of the DXL
Transformer, and an XSL style sheet named AllLSinForm.xsl, which extracts any
LotusScript code in the forms. When the extracted code is formatted in HTML by
a cascading style sheet, the results look like those in Figure 12-16 on page 365.
364 Domino Designer 6: A Developer’s Handbook

Figure 12-16 Extracted code formatted in HTML

The flexibility of Transformer will make it easy for you to extract, archive, and
reuse your code in ways that haven't been possible before with Design Synopsis.

12.3 New Domino 6 design elements
Domino Designer 6 includes several new design elements. Some of these are
already mentioned earlier in the book, but mostly as a reference to this section.

12.3.1 Shared Resources
Shared Resources is one of the new design elements in Domino 6, although
some of the elements that can be shared existed in prior releases. Sharing
elements lets you reference a resource repeatedly throughout an application,
while only having to maintain it in one standard place. Shared Resources
includes the following elements:

� Images
� Files
� Applets
 Chapter 12. New features in Domino 6 365

� Style Sheets
� Data Connections

Among these, the following are new design elements:

� Files
� Style Sheets
� Data Connections

Files
Designer allows you to share non-NSF files within and across databases. This
capability gives you greater flexibility in designing your application. For example,
you might need to reference a shared company logo that is a GIF file, or all
applications in your company might share a welcome page that is an HTML file,
created by and maintained in another tool by a non-Notes developer.

For more information about files, and how to create a file resource, refer to 10.2,
“Files” on page 322.

Style sheets
Cascading style sheets (CSS) give you the ability to control many aspects of your
page layout, including headers, links, text, fonts, styles, color, and margins. You
can browse your local file system for a CSS, turn it into a shared resource, and
then insert it into a page, form, or subform.

For more information about style sheets, how to create them and insert them in
your application, refer to 10.4, “Style sheets” on page 330.

Data connections
Many of the enhancements in Domino Designer 6 extend the properties-box
paradigm to make functions easier and more intuitive. One of the most powerful
is the creation of a Data Connector and linked fields that connect a form to an
external database. This brings a new ease to integrating Domino and relational
data sources.

Data Connection Resources (DCRs) bring the technology of Domino Enterprise
Connector Services (DECS) into Designer so that you as a developer can define
a connection to an external data source, such as a relational database, and use
the connection to link the fields in a form to fields in the external source. DCRs
are reusable in an application and can be shared across applications. You can
use DCR technology to access data in enterprise systems and then take
advantage of the power of a Domino application to replicate, share, secure, and
manage the data.
366 Domino Designer 6: A Developer’s Handbook

To create an external connection, you first need to install the DECS server
software on your Domino server. The client software for the application you are
connecting to (such as DB2 or ODBC) must also be installed on the Domino
server. You can develop an application locally, but you will be unable to browse
the external metadata when designing your application.

For more information about data connections, how to create them and include
them in your applications, refer to 10.5, “Data connections” on page 335.

12.3.2 Shared Code
Shared Code is a new design element in the design element navigator. It is a
container for other design elements, which is considered code-related, that can
easily be referenced and reused repeatedly throughout an application, while only
having to maintain it in one standard place.

The shared code container now includes these design elements:

� Agents
� Outlines
� Subforms
� Fields
� Actions
� Script Libraries

None of these design elements in the new container is new to Domino Designer
6. For more information on each single element, refer to their respective
chapters.

12.4 The event model
There are fundamental changes in the event model, making it easier and more
efficient to program in Domino.

Note: The Script Libraries container has a new type of library that can be
added, JavaScript Libraries, which works like other script libraries. In previous
versions, you have one script library from where you selected which kind of
code it should include (Java or LotusScript). Now there are three possible
libraries to be added to the Script Libraries container: LotusScript, Java and
JavaScript.
 Chapter 12. New features in Domino 6 367

12.4.1 Targeting your code
Domino Designer 6 distinguishes between Notes clients and Web browser
events, enabling you to easily write different code for Notes clients and Web
browsers. The client events permit LotusScript, and in some cases Formula and
Simple actions in addition to JavaScript.

Figure 12-17 shows how you select which client the selected event should run
on.

Figure 12-17 New event model

12.4.2 Removed events
The event HelpRequest, which could be found on pages and forms in earlier
releases, is removed in Domino 6. Use the onHelp event instead.

12.4.3 New preferred events
In Domino 6, there are new events that should replace events from previous
versions.

Table 12-1 New preferred events

Old event Preferred event

Entering onFocus

Exiting onBlur

PostOpen onLoad for Form and Page

QueryClose onUnload for Form and Page

QuerySave onSubmit for Form
368 Domino Designer 6: A Developer’s Handbook

12.4.4 New events
There are several new events in Domino 6. These are shown in Table 12-2.

Table 12-2 New events in Domino 6

Note: The old events still work, but it is recommended and preferred that the
new events be used, because these are available both for Notes clients and
Web browsers.

Event Run Language Object Trigger

onBlur Client JavaScript
LotusScript

Field Object is
deselected.

onChange Client JavaScript
LotusScript

Field Contents of
object change.

onFocus Client JavaScript
LotusScript

Field Object is
selected.

onHelp Client Formula
LotusScript
JavaScript

Form
Page

Occurs after
the user
chooses Help
or presses F1.

PostEntryResi
ze

Client Formula
LotusScript

Folder
View

After a drag
operation in a
calendar folder
or view.

PostSend Client Formula
JavaScript
LotusScript

Form
Subform

After object is
sent.

QueryEntryRe
size

Client LotusScript
Formula

Folder
View

Before a drag
operation in a
calendar folder
or view.

QueryRecalc Client Formula
JavaScript
LotusScript

Form
Page
Subform

Before object
is refreshed
(and values
are
recalculated).

onSubmit
(new for
LotusScript)

Client Formula
JavaScript
LotusScript

Form
Page

Before object
is saved.
 Chapter 12. New features in Domino 6 369

12.5 @functions and @commands
The @formulas have been enhanced with Domino 6. There are several new
functions, commands and formulas. This section covers the new @formulas
available in Domino 6, and highlights some of the most useful new functions.

12.5.1 Why use them
Why should you still use @functions and @commands? Well, the answer is quite
simple: they are easy and fast to use. They have been here since Notes 1.0 and
it is the core processing language. The @formulas and @commands execute
very fast and are upward compatible. In many cases they can be used where you
cannot use other programming languages, as in field, column, and Hide-When
formulas.

12.5.2 Limitations
There are still some issues with the @formulas, and maybe the most often
mentioned one is the lack of a debugger.

onUnload Client Formula
LotusScript
JavaScript

Form
Page

Before object
is unloaded.

onFocus
(new for
LotusScript)

Client LotusScript
JavaScript

Field Object is
selected.

QuerySend Client Formula
JavaScript
LotusScript

Form
Subform

Before object
is sent.

Tip: InViewEdit will be covered in 12.13.8, “Editing a document in a view” on
page 456.

Event Run Language Object Trigger

Tip: With Domino 6, there is a new @function called @Statusbar, which will
help you debug your code. It works like the Print method in LotusScript, and
prints to the status bar of your Notes/Designer client. It is not a complete
debugging feature, but it will help you print out values during your formula
code execution.
370 Domino Designer 6: A Developer’s Handbook

The @formulas are still not a standard language, like LotusScript (BASIC). You
still need to learn something new. Nor is there support for complex types, and
you cannot write your own functions.

Given the ease and power of @functions and @commands, however, these
restrictions are relatively minor.

12.5.3 New programming features
This section introduces you to some of the new programming features.

Curly brackets
These allow you to delimit strings with quotation marks in them, which makes
REM statements much easier:

REM { Removed code: days:=”Mon”:”Tue”:”Wed”:”Thu”:”Fri”:”Sat”:”Sun” }

Note that there is no need to comment out (add a backslash in front of) the
quotation marks in this code. Writing the code shown in Figure 12-18 will raise an
error, because we have not escaped the quotation marks.

Figure 12-18 Improper handling of commented-out quotation marks

The correct way in Notes/Domino R5 would be to escape the quotation marks, as
shown in Figure 12-19 on page 372.
 Chapter 12. New features in Domino 6 371

Figure 12-19 Proper handling of commented-out quotation marks

With Notes/Domino 6, this can be done more easily by using curly brackets, as
shown in Figure 12-20.

Figure 12-20 Using the curly brackets

Array subscript operator
You can now use a list subscript operator ([]) to return one element of a list. A
subscript consists of a numeric value in brackets. The numeric value can be a
constant, variable, or expression. Decimals are truncated to integers. A subscript
follows the list name. The following example uses a variable subscript to iterate
through a list:

n := 1;
@While(n <= @Elements(Categories);
@Prompt([OK]; "Category " + @Text(n); Categories[n]);
n := n + 1)

Tip: The Categories field containing the list must be located above or to the
left of the field containing this code or the formula returns an Array index out
of bounds error.
372 Domino Designer 6: A Developer’s Handbook

This example uses @While and looping, which also is a new feature of Domino
Designer 6. Refer to 12.5.5, “Looping” on page 382 for more information about
this feature.

Using this subscript operator to return one element of a list reduces the need for
@Subset. In previous versions, this was more complex and complicated,
especially if you had to pick a middle value in an array.

Using Domino Designer 6, it would look like this:

dbFileName := @DbName[2]

The first element of a list is subscript [1]. A subscript that is less than [1] or that is
greater than the number of elements in the list also returns the Array index out
of bounds error.

Assignment statements
There is a new way to assign statements with Domino Designer 6: you don’t
need to declare variables anymore. @Set and @Setfield are more or less
redundant. We can now assign multiple times to the same variable and nest
assignments in the functions:

@If(Firstname = “Rune” ; FIELD x := “Rune” ; y := “Carlsen”);

We can also nest our assignments in an operation. The following example
assigns "randi" to the variable name as well as the value "RANDI" to the
nameUpper variable:

nameUpper := @UpperCase(name := “randi”);

You can now also use the FIELD reserved word with a nested assignment:

FIELD CityUpper := @UpperCase(FIELD City := "London")

12.5.4 New and enhanced @formulas and @commands
In this section we cover all the @formulas and @commands that are new or
enhanced in Domino 6.

New @functions
This is the complete list of new @functions in Domino 6. See “Some examples
with new @functions” on page 379 for examples.
 Chapter 12. New features in Domino 6 373

Table 12-3 New @functions in Domino 6

@function Comments

@AttachmentModifiedTimes Returns the date on which the file attached to the
current document was last modified.

@BusinessDays Returns the number of business days in one or more
date ranges.

@CheckFormulaSyntax Reports compile errors, not runtime errors. A runtime
error is generated, for example, if a function has an
insufficient number of arguments.

@Compare Compares the alphabetic order of the elements in two
lists pair-wise.

@ConfigFile Returns the file path for the initialization file for Lotus
Notes (NOTES.INI).

@Count Calculates the number of text, number, or time-date
values in a list. This function always returns a number
to indicate the number of entries in the list.
This function is similar to @Elements, except that it
returns the number 1 instead of 0, when the value it is
evaluating is not a list or is a null string.

@DocLock Locks, unlocks, returns the locked status of the
current document, or indicates if a database has
document locking enabled.

@DocOmittedLength Returns the approximate number of bytes a truncated
document lost during replication.

@DoWhile Executes one or more statements iteratively while a
condition remains true. Checks the condition after
executing the statements.

@Eval At runtime, compiles and runs each element in a text
expression as a formula. Returns the result of the last
formula expression in the list or an error if an error is
generated by any of the formula expressions in the
list.

@FileDir Returns the directory portion of a path name, that is,
the path name minus the file name.

@FloatEq @FloatEq is helpful in dealing with the inexactness of
floating point operations.
374 Domino Designer 6: A Developer’s Handbook

@For Executes one or more statements iteratively while a
condition remains true. Executes an initialization
statement. Checks the condition before executing the
statements and executes an increment statement
after executing the statements.

@GetAddressBooks Returns a list of the address books associated with a
client (if the current database is local) or server.

@GetCurrentTimeZone Returns the current operating system's time zone
settings in canonical time zone format.

@GetField Returns the value of a specified field. @GetField,
@ThisName and @ThisValue provide a means to
write portable code. Instead of specifying field names
in formulas, use these @functions to write code that
can be copied as is from one formula to another.

@GetFocusTable Returns the name, current row, or current column of
the table that is in focus.

@GetHTTPHeader In a Web application, returns the value of an HTTP
request-header field that the browser client sends to
the server. @GetHTTPHeader is useful in formulas
that run in the context of a browser.
The Notes client always returns null for this formula.

@GetViewInfo Returns a view attribute.There are 3 attributes to get,
CalendarViewFormat, ColumnValue and
IsCalViewTimeSlotOn.

@HashPassword Encodes a string.

@IfError Returns a null string ("") or the value of an alternative
statement if a statement returns an error.

@IsNull Tests for a null value. This function is useful for
checking for empty fields before using them in other
functions in which they might generate errors.

@IsVirtualizedDirectory Indicates whether virtualized directories are enabled
for the current server.

@LDAPServer Returns the URL and port number of the LDAP
listener in the current domain.

@Nothing In an @Transform formula, returns no list element
(reducing the return list by one element). In any other
context, returns null.See @Transform for more info.

@function Comments
 Chapter 12. New features in Domino 6 375

@OrgDir In a Service Provider (xSP) environment, returns the
name of the subdirectory for the company with which
the currently authenticated user is registered. Lotus
Notes/Domino retrieves this information from the
organization's certifier document.

@ReplicaID Returns the replica ID of the current database.

@SetHTTPHeaders In a Web application, sets the value of an HTTP
response-header field, which is passed from the
server to the client.

@ServerAccess Checks if a specified user has a specified
administrative access level to a server.

@ServerName Returns the name of the server containing the current
database. When the database is local, returns the
user name.

@SetViewInfo In Standard Outline views, filters a view to display only
documents from a specified category. In Calendar
views, filters a view to display only document that
contain a specified string in a specified column.

@Statusbar Writes a message or messages to the status bar.
Similar to the Print method in LotusScript - used for
debugging.

@Sort Sorts a list based on keywords as parameters.

@ThisName Returns the name of the current field. Very useful in
validation formulas

@ThisValue Returns the value of the current field. Very useful in
validation formulas and portable code.

@TimeMerge Builds a time-date value from separate date, time, and
time zone values.

@TimeToTextInZone Converts a time-date value to a text string,
incorporating time zone information.

@TimeZoneToText Converts a canonical time zone value to a
human-readable text string.

@ToNumber Converts a value with a data type of text or number to
a number value.

@ToNumber Converts a value with a data type of text or time to a
date-time value.

@function Comments
376 Domino Designer 6: A Developer’s Handbook

Enhanced @functions
Several @functions have been enhanced in Domino 6. Following is the complete
list.

Table 12-4 Enhanced @functions

@ToTime Converts a value with a data type of text or time to a
date-time value.

@Transform Applies a formula to each element of a list and returns
the results in a list.

@UpdateFormulaContext Updates the context of a formula to the Notes client
window currently being accessed by the code. For
example, if the code accesses a new form called
"Response" by using
@Command([Compose]:"Response",
@UpdateFormulaContext switches the context of the
formula to this new form. Any subsequent functions in
the code execute in the context of the Response
document, not the current document.

@UrlDecode Decodes a URL string into regular text.

@UrlEncode Encodes a string into a URL-safe format.

@UrlQueryString In a Web application, returns the current URL
command and parameters, or the value of one of the
parameters.

@VerifyPassword Compares two passwords. Use this function to verify
which password format, @Password or
@HashPassword, was used to encode a password
field.

@WebDbName Returns the name of the current database encoded
for URL inclusion.

@While Executes one or more statements iteratively while a
condition remains true. Checks the condition before
executing the statements.

Enhanced @function Comment

@DialogBox Has a new keyword [OkCancelAtBottom].

@function Comments
 Chapter 12. New features in Domino 6 377

@DbColumn
(Domino data source)

Allows “ReCache” in the first parameter to refresh the
cache where ““ (cache) is specified in a previous lookup to
the same data source.

@DbColumn
(ODBC data source)

Allows “ReCache” in the first parameter to refresh the
cache where ““ (cache) is specified in a previous lookup to
the same data source.

@DbCommand
(Domino data source)

Enables you to list folders and display next or previous
groups of documents in a view. This function works in
Web applications only.

@DbCommand
(ODBC data source)

Allows “ReCache” in the first parameter to refresh the
cache where ““ (cache) is specified in a previous lookup to
the same data source.

@DbLookup
(Domino data source

Allows the keywords [FailSilent], [PartialMatch], and
[ReturnDocumentUniqueID] as a new parameter.

@DbLookup
(Domino data sources)

Allows “ReCache” in the first parameter to refresh the
cache where ““ (cache) is specified in a previous lookup to
the same data source.

@DbLookup
(ODBC data sources)

Allows “ReCache” in the first parameter to refresh the
cache where ““ (cache) is specified in a previous lookup to
the same data source.

@Explode Takes a fourth parameter that permits the suppression of
newlines as separators. Not previously documented is the
fact that newlines are treated as separators regardless of
the specification of the second parameter.

@Max With one parameter returns the largest number in a list.

@Min With one parameter returns the smallest number in a list.

@Name Has new keywords that convert a name from Domino to
LDAP format and vice-versa.

@Now Takes parameters that allow the time-date to be based on
the server containing the current database or specified
servers.

@SetDocField Can now be used to set the value of a field in the current
document.

@Text Can now convert rich text.

Enhanced @function Comment
378 Domino Designer 6: A Developer’s Handbook

Some examples with new @functions
To emphasize the use and strength of some of the new @functions, and as a
guidance for using them, this section shows how you can use the new
@functions.

Field validation using Domino 6

Field validation on several fields on a form, is much easier in Domino 6, using
@ThisField and @ThisValue. Instead of, as earlier, hard coding a name of a field
in a validation formula, you know use these functions to make them more
dynamic:

@If(@ThisValue = ““ ; @Failure ; @Success)

@IfError

Returns a null string ("") or the value of an alternative statement if a statement
returns an error. This function can easily replace @If(@IsError(...)) by using
@IfError instead.

Example: A keyword lookup formula that checks for errors:

@IfError(@DBLookup(““;””;”Categories”;Category;Subcategory;”Subcategory”);”No
subcategories defined|”)

@Statusbar

This is a great new feature for debugging using @functions. Earlier, we usually
used message boxes to check values during a long code, now we can write
values of variables during the code, directly to the status bar, as we do in
LotusScript, using the Print method.

tmp := @DbName[1] ;
@StatusBar(tmp) ;
@Prompt([Ok] ; tmp ; tmp)

As this code runs, the status bar is updated before the prompt box is. The
example uses a list subscript operation to get the server name. Refer to 12.5.3,
“New programming features” on page 371.

@UserAccess Accepts keyword parameters that can return the user's
database access level or test for specific user privileges
for a database.

Enhanced @function Comment
 Chapter 12. New features in Domino 6 379

@Servername

Instead of using @subset and @dbname to get the server name, we can now
use @servername instead. It returns the name of the server containing the
current database. If the database is local, it returns the user name.

The following example displays a server name that reads the format
“CN=Trondheim/O=Lotus”:

@Prompt([OK] ; “Servername” ; @Servername)

The following example displays a server name that reads the format “Trondheim”.

@Pormpt([OK] ; “Servername” ; @Name([CN] ; @Servername))

Looping using @while and @dowhile

Refer to section 12.5.5, “Looping” on page 382.

New duplicating @commands
The following new @commands duplicate the functionality of existing
@commands, except that they execute as soon as they are encountered in a
formula. The @commands they duplicate execute only after all @functions
present in the formula have been executed.

Table 12-5 List of new, but duplicating, @commands in Domino 6

Note: If the database is located locally, @servername returns the username
of the person running the @formula.

@command Duplicates:

Clear EditClear

CloseWindow FileCloseWindow

DatabaseDelete FileDatabaseDelete

EditProfileDocument EditProfile

ExitNotes FileExit

FolderDocuments Folder

NavNext NavigateNext

NavNextMain NavigateNextMain

NavNextSelected NavigateNextSelected
380 Domino Designer 6: A Developer’s Handbook

New @commands
These @commands are new with Domino 6, and do not duplicate any existing
commands.

Table 12-6 New @commands in Domino 6

Enhanced @commands
These @commands have been enhanced in Domino 6.

Table 12-7 Enhanced @commands in Domino 6

NavNextUnread NavigateNextUnread

NavPrev NavigatePrev

NavPrevMain NavigatePrevMain

NavPrevSelected NavigatePrevSelected

NavPrevUnread NavigatePrevUnread

RefreshWindow ReloadWindow

RunAgent ToolsRunMacro

RunScheduledAgents ToolsRunBackgroundMacros

SwitchForm ViewSwitchForm

SwitchView ViewChange

@command Comments

ComposeWithReference Creates a response document containing a reference to
the main document.

EditQuoteSelection Makes selected text look like an Internet-style reply.

EditRestoreDocument Restores a soft deleted document to the view or folder it
was deleted from.

RefreshFrame Refreshes a specified frame in a frameset.

@command Comments

MailAddress

ReplicatorReplicateHigh Does not require the Replicator page to be open.

ReplicatorReplicateNext Does not require the Replicator page to be open.

@command Duplicates:
 Chapter 12. New features in Domino 6 381

12.5.5 Looping
You can now do looping in Domino Designer 6, using @formulas. @DoWhile,
@While, and @For let you execute statements iteratively (in a loop), depending
on whether a condition is True or False. @For initializes, changes, and tests the
condition as part of the @function, and is best used for processing a range of
numbers such as list subscripts. @While and @DoWhile test the condition;
typically you initialize the condition before the @While or @DoWhile statement,
and change the condition with one of the @While or @DoWhile statements.
@While tests the condition before executing its statements, and @DoWhile tests
after.

If you are looping through a field containing a list, be sure the “Allow multiple
values” check box is selected in the Field Properties box for the list field.

ReplicatorReplicateSelected Does not require the Replicator page to be open.

ReplicatorReplicateWithServer Does not require the Replicator page to be open.

ReplicatorSendMail Does not require the Replicator page to be open.

ReplicatorSendReceiveMail Does not require the Replicator page to be open.

ReplicatorStart Does not require the Replicator page to be open.

ReplicatorStop Does not require the Replicator page to be open.

WindowCascade Resizes all open Notes/Domino windows to less
than 50% of their maximum window size and layers
them in a cascading stack.

WindowNext Maximizes the Notes window whose taskbar button
is to the right of the current window's taskbar button
or, if the windows are cascaded, moves the next
window in the stack to the top of the stack.

WindowTile Resizes all open Notes/Domino windows to display
them all at once. The open windows are tiled across
the screen until they fill the background.

@command Comments

Note: All of the following examples perform the same operation. Depending
on your preference and your code and what it should do besides looping,
choose the best solution for your script.
382 Domino Designer 6: A Developer’s Handbook

The use of @For

For(n := 1;
n <= @Elements(Categories);
n := n + 1;
@Prompt([OK]; "Category " + @Text(n); Categories[n]))¨

The first parameter initializes the variable n to 1 and executes once. The second
parameter tests whether n is less than or equal to the number of elements in
Categories. The third parameter increments n. The fourth parameter is a
statement that executes as long as the test remains True.

Using this code will prompt for every value in the Categories multivalue field.

The use of @While

n := 1;
@While(n <= @Elements(Categories);
@Prompt([OK]; "Category " + @Text(n); Categories[n]);
n := n + 1)

Using this code will prompt for every value in the Categories multivalue field.

The use of @DoWhile

@DoWhile tests at the bottom of the loop instead of at the top, like @While. The
statements will always execute at least once.

@If(@Elements(Categories) = 0; @Return(0); "");
n := 1;
@DoWhile(
@Prompt([OK]; "Category " + @Text(n); Categories[n]);
n := n + 1;
n <= @Elements(Categories))

Using this code will prompt for every value in the Categories multivalue field.

12.5.6 Other enhancements
There are other enhancements that should be noted, as well:

� The 64 K limit is gone in event codes.

� Buttons formulas do not need the main statement.
 Chapter 12. New features in Domino 6 383

12.6 LotusScript
In Domino 6, there are several new enhancements to LotusScript. This section
only covers the most important and significant changes, as there are a huge
number of new methods, properties, and classes. This section covers:

� New classes
� The remote debugger
� Recompile all
� Language enhancements

12.6.1 New classes
The new LotusScript classes in Domino 6 are:

NotesAdministrationProcess
NotesColorObject
NotesDOMAttributeNode
NotesDOMCDATASectionNode
NotesDOMCharacterDataNode
NotesDOMCommentNode
NotesDOMDocumentFragmentNode
NotesDOMDocumentNode
NotesDOMDocumentTypeNode
NotesDOMElementNode
NotesDOMEntityNode
NotesDOMEntityReferenceNode
NotesDOMNamedNodeMap
NotesDOMNode
NotesDOMNodeList
NotesDOMNotationNode
NotesDOMParser
NotesDOMProcessingInstructionNode
NotesDOMXMLDeclNode
NotesDXLExporter
NotesDXLImporter
NotesMIMEHeader
NotesNoteCollection
NotesReplicationEntry
NotesRichTextDocLink
NotesRichTextNavigator
NotesRichTextRange
NotesRichTextSection
NotesRichTextTable
NotesSAXAttributeList
NotesSAXException
NotesSAXParser
NotesStream
384 Domino Designer 6: A Developer’s Handbook

NotesUIScheduler
NotesXMLProcessor
NotesXSLTransformer

Use of the new classes
Most of these new LotusScript classes are designed to interface with XML data in
some way. They support a full set of generalized XML processing functions. In
addition, Domino has a Notes-specific DTD, which is used to represent Notes
database and document information. Domino has its own XML format called DXL
(Domino XML Language). DXL represents all designer elements in a XML format
that conforms to the Domino DTD. The main classes that handle DXL data are
NotesDXLImporter, NotesDXLExporter, NotesXSLTransformer,
NotesDOMParser, and NotesSAXParser. These classes are covered in greater
detail in Chapter 16, “XML” on page 743.

In addition to XML-related classes, a couple of classes were added to allow
better manipulation of rich text. See in-depth discussion about rich text
programming and the new rich text classes in Chapter 15, “Rich text
programming” on page 697.

NotesAdministrationProcess
This is a new LotusScript class with Domino 6 that represents the administration
process on a Domino server. In earlier releases of Notes/Domino, there was no
way to generate an administration request. This is now possible using the new
class.

Example 12-1 on page 386 shows an example of creating an administration
request for creating a replica of the database Redbook.nsf onto the server
Trondheim/ITSO, from the source server SourceServer/ITSO.

Using the method CreateAdministrationProcess of the NotesSession class, we
specified the name of the server containing the Administration Requests
database (admin4.nsf). An empty string means the local computer. The server
must contain a replica of the Certification Log database. You must have access
privileges to the Domino Directory on the server for Administration Process
requests that use it. You need author access to the Administration Requests
database to be able to create requests.

Tip: Even though it was not possible to generate administration requests in
earlier releases, you could always manipulate and generate documents
directly in the admin4.nsf database. This required that you really knew what
you were doing, and knew all the required fields to set on creation.
 Chapter 12. New features in Domino 6 385

Using the CreateReplica method of the NotesAdministration class, the document
is generated into the Administration Request database. This method triggers
"Check access" and "Create replica" administration process requests.

Example 12-1 Creating a replica using the NotesAdministrationProcess

Sub Initialize

Dim session As New NotesSession
Dim adminp As NotesAdministrationProcess
Dim sNotesID As String

' Creates a new NotesAdministrationProcess object
Set adminp = session.CreateAdministrationProcess("SourceServer/ITSO")

' Enters a request in the Administration Requests database.
sNotesID = adminp.CreateReplica("SourceServer/ITSO", "Redbook.nsf",

"Trondheim/ITSO")

End Sub

The request generated is shown in Figure 12-21.

Figure 12-21 The “Check access” request generated using NotesAdministrationProcess

NotesStream
The new NotesStream LotusScript class represents a stream of binary or
character data. To create a NotesStream object, use the CreateStream method
in NotesSession. You could use this class to create a stream, and to this stream
write content or text values of a Body item of selected documents, and later use
this stream to read from.

NotesReplicationEntry
The new NotesReplicationEntry LotusScript class extends the NotesReplication
class, and is contained by NotesReplication class. NotesReplicationEntry
represents the replication settings for a pair of servers in a database, of which
386 Domino Designer 6: A Developer’s Handbook

one is the source and the other is the destination. By using the GetEntry method
in the NotesReplication class, you can create or get a NotesReplicationEntry
object.

NotesColorObject
The new NotesColorObject LotusScript class represents a color as defined in
Domino. Domino defines colors numbered 0 through 240, as reflected in the
read-write property NotesColor. Each Domino color maps to RGB (red, green,
and blue) values in the range 0-255 and HSL (hue, saturation, and luminance)
values in the range 0-240, as reflected in the remaining, read-only properties.
NotesColor can be used as the value for the following properties:

NotesColor in NotesRichTextStyle
BackgroundColor in NotesView
FontColor and HeaderFontColor in NotesViewColumn

12.6.2 Remote debugger
In Domino 6 you can debug any LotusScript agents or script libraries currently
running on the server remotely. You can use the remote debugger to step through
and debug LotusScript agents running on the server. The agent you want to
debug must be running when you start the remote debugging tool. This enables
you, in real time, to debug a script running on a server with the proper access.

More than one user can attach to and debug the same agent. However, only one
user has control to debug it at any given time. A second user may get control by
attaching to the same agent. This capability is useful, for instance, if you want
help from a coworker in debugging an agent. You can ask the coworker to attach
to and debug the server agent and that coworker can do so without having to be
in the same physical location.

There are several things that must be configured to take advantage of the remote
debugger feature. Both the server and the agent itself must be enabled and
configured. The reason for this is security. You don't want someone to come in
through the remote debugger and change the value of your script or to find out
information through the debugger. Ensure that you configure both your agents
and servers correctly for this feature to be enabled.

Tip: If you attempt to continue debugging the server agent after your coworker
has attached to and begun to debug it, you will get the error Another user has
attached to the agent and taken control. Please try to reconnect for
further debugging.
 Chapter 12. New features in Domino 6 387

Enabling the server for remote debugging
1. Before starting the server, add the following value to the ServerTasks= list in

the server's notes.ini file:

Rdebug

If the server is already running, to begin the remote debugging task, either:

– Restart the server (after having added rdebug to the ServerTasks list in the
notes.ini file)

– Or enter load rdebug at the server console.

2. Click Server Tasks on the server document, and then select Remote
Debugger Manager and change the value of the “Allow remote debugging of
this server” to “Enabled”. See Figure 12-22. You must have administrative
access to the server to edit this field.

Figure 12-22 Enabling remote debugging on the server

3. You can also set the limit for running the rdebug task on the server in the
“Turnoff Server Debug after” setting.

4. Enter a time interval in the “Agent Wait at Start Time” field if you want to force
the agent to pause before running, giving you time to attach the remote
debugger to the target agent.

5. Check the Ports -> Internet Ports -> Remote Debug Manager tab to ensure
that the TCP/IP port status property is set to Enabled. Also, if you are thinking
of enabling remote debugging over the Internet or between servers with
firewalls, make sure that the port number set is open for traffic.

6. Make sure you are listed on the server's Security tab as having permission to
run agents.

Tip: If you set this value to -1, the task can run forever.
388 Domino Designer 6: A Developer’s Handbook

Enabling an agent for remote debugging
To enable an agent for remote debugging, follow these steps:

1. On the Security tab of the Agent Properties box (Figure 12-23), select Allow
remote debugging.

Figure 12-23 Allow remote debugging

2. On the Basics tab of the Agent Properties box, click Schedule.

The Agent Schedule dialog box displays (Figure 12-24 on page 390).

3. Click Schedule and select the server from the “Run on” list box.
 Chapter 12. New features in Domino 6 389

Figure 12-24 Run on server

4. In the Programming pane, add either of the following code snippets to the
beginning of the Initialize event code in the agent:

Print "AgentName is about to start running****************"
Sleep(30)

This prints a message to the server console when the agent is preparing to
run and delays its execution for thirty seconds, giving you time to open the
remote debugger and select the agent as a target.

Or add the following line at the start of your agent:

Stop

If you set the “Agent Wait at Start Time” property in the server document to
Yes, then when Domino encounters the Stop statement it waits for the time
indicated in the time-out value defined in the server document, again giving
you time to open the remote debugger and select the agent as a target.

This does not mean that to stop equals to sleep. If the remote debugger is not
on, stop is ignored. Sleep however, will always sleep regardless whether the
remote debugger is there or not. Also, if the remote debugger is attached,
stop behaves like a break point. Sleep will just sleep and continue unless the
user does something to stop it. The stop statement is ignored when the agent
isn’t in debug mode.
390 Domino Designer 6: A Developer’s Handbook

Starting the remote debugger
To run a specific agent you want to debug, do one of the following:

� Increase the run frequency of the agent by clicking Schedule on the Basics
tab of the Agent Properties box. In the Agent Schedule dialog box, change the
hour value of “Run agent every” to zero and the minutes value to 5 or less.

� Enter the following command on the server console:

tell amgr run databaseName.nsf 'agentName'

This tells the agent manager to start the agent named agentname in the
database databaseName.nsf.

1. While the agent you want to debug is running on the server, choose File ->
Tools -> Remote Debugger from the menu.

This starts the Lotus Notes Server Agent Debugger window.

2. Select File -> Select Debug Target from the menu.

The Select Debug Target dialog box displays.

3. Choose the server that is running the agent from the Server list box and click
Open.

A list of the databases on the server displays.

4. Select the database that contains the agent and click Open.

If the agent you want to debug is currently running, it appears in the Debug
Target box; see Figure 12-25 on page 392.

5. Select the agent you want to debug from the list of agents currently running
on the database.

Tip: Use the Sleep() function in your agent to override the setting set in the
server document, or if the field “Agent Wait at Start Time” in the server
document is not set.

Tip: The run parameter for “tell amgr” is a new console command of Domino
6, and will run the agent specified. Notice that you use a quote (‘) to enclose
the agent name.
 Chapter 12. New features in Domino 6 391

Figure 12-25 Remote debugger

6. Click Open.

The Script Debugger window displays.

When we now connect to the selected agent, the usual interface for debugging
an agent will be shown. Using the remote debugger allows you to step through
and debug LotusScript agents running on the server. The agent you want to
debug must be running when you start the remote debugging tool. This enables
you, in real time, to debug a script running on a server with the proper access.
More than one user can attach to and debug the same agent. However, only one
user has control to debug it at any given time. A second user may get control by
attaching to the same agent.

Tip: If you cannot connect or get a list of agents to remote debug, make sure
that you have enabled your agent for remote debugging. This is explained in
“Enabling an agent for remote debugging” on page 389.
392 Domino Designer 6: A Developer’s Handbook

12.6.3 Recompile all
In Lotus Notes/Domino, script compilation takes place in two phases:

� A partial compilation occurs as you enter the script. Syntax and other per-line
errors are reported at this time.

� A complete compilation occurs when you save the script. All remaining
compile-time errors are reported at this time.

If you attempt to save a script with compilation errors, you are given a choice of
editing the script again or exiting without saving your changes.

With Domino 6, the new feature “Recompile all” will help you recompile all your
LotusScripts in the current database. This can be very useful when you have
performed changes in a script library that might affect all your other LotusScripts.

Recompile All LotusScript is a menu tool, available through your Tools menu.

As a general rule, the code that calls a script library should have been compiled
more recently than the library. This ensures that all the caller’s references to
functions and global variables in the library are correct. This menu function
determines which code calls which script libraries and recompiles everything in
the right order, from the bottom up.

Recompile All LotusScript compiles all design documents in the database, but
does not modify design elements with script errors. If any errors are found during
the recompilation, Domino Designer 6 will display a list of all these elements
(Figure 12-26 on page 394).

Note: If you choose to exit, all changes are lost!
 Chapter 12. New features in Domino 6 393

Figure 12-26 Recompile All LotusScript showing elements with errors

If no errors are found, you should see the information displayed in Figure 12-27.

Figure 12-27 Recompile all LotusScript run successfully
394 Domino Designer 6: A Developer’s Handbook

12.6.4 LotusScript to Java (LS2J)
LotusScript to Java is a new LSX, enabling you to use your LotusScript to:

� Instantiate Java Objects

� Call Java Object Methods

� Read and write to Java Object Properties

Using LotusScript and LS2J, you can access Java classes, giving you a powerful
cross-platform extension to LotusScript. Developers can access Java in
LotusScript programs as a set of predefined LotusScript objects. This set of
objects allows LotusScript to use already created Java classes that are available
in script libraries or found using the classpath.

The new objects available to manipulate Java are:

� JavaSession
� JavaClass
� JavaObject
� JavaMethod
� JavaMethodCollection
� JavaProperty
� JavaPropertyCollection
� JavaError

As mentioned, you can instantiate any Java class, using classes available in Jar
files on the classpath, or classes available in your Domino Designer Java Library.
Using the Designer library will also enable replication of these libraries.

By taking advantage of LS2J, you can use extensive API, which is beyond the
capabilities of LotusScript.

Enabling a LS2J connection
To enable the LS2J connection, the following tasks have to be performed.

� Initialize Java Virtual Machine (JVM).

� Establish a JVM connection (JavaSession).

Note: LSXs are Lotus libraries, like DLLs, that provide external data and
system access to the Domino LotusScript environment.

Note: Domino Designer Java Library is a Script Library available in the
Designer client.
 Chapter 12. New features in Domino 6 395

� Find the desired class (JavaClass).

� Get the desired object (JavaObject).

� Access the object’s methods and properties.

Let us create an example that takes us through all these steps, and create a
simple LS2J agent:

1. Initialize Java Virtual Machine (JVM).

The first thing to do is to initialize the JVM, which loads the JavaSession. In
LotusScript code, include the following code:

uselsx “*javacon”

2. Establish a JVM connection (JavaSession).

The JavaSession represents a JVM connection, and is the starting point for
accessing Java objects. Example:

Dim jsession as New JavaSession

3. Find the desired class (JavaClass).

JavaClass represents a Java class, and can be included with the following
code:

Dim jclass as JavaClass
set jclass = jsession.GetClass(“java/net/InetAddress”)

4. Get the desired object.

You can get the object you want by creating a new one, calling a static method
or accessing static properties in Java. Example:

Dim localhost as JavaObject
set localhost = jclass.getLocalHost()

5. Access the object’s methods and properties.

You can only access public fields and methods, and dot notation usually
suffices:

msgbox “Name: “ & localhost.getHostName()

Using the following code, which calls Java from LotusScript, should enable you to
access information on your computer—not possible using LotusScript alone:

Option Public
uselsx"*javacon"
Sub Initialize
Dim jsession As JavaSession
Dim jclass As JavaClass
Dim localHost As JavaObject
Set jsession = New JavaSession
Set jclass = jsession.GetClass("java/net/InetAddress")
396 Domino Designer 6: A Developer’s Handbook

Set localHost = jclass.getLocalHost()
Msgbox "Name: " & localHost.getHostName() & chr(13) & "Address: " &
localHost.getHostAddress()
End Sub

Running this example should give msgboxes like the one shown in Figure 12-28.

Figure 12-28 Calling Java from LotusScript

LS2J limitations
Be aware of some limitations in using LS2J:

� You may not delete a Variant containing a JavaClass object.

� There are some data type limitations. Refer to the Domino Designer 6 Help
Database for more information.

� LotusScript property or method names are not case sensitive, but Java
property and method names are. If two Java properties are the same except
for their case, use the GetProperty and GetValue or SetValue methods to
access the correct property. Java methods may also be overloaded; that is,
they may differ only by parameter type. If two Java methods are the same
except for their case, or their parameter type, use the GetMethod and Invoke
methods to access the correct method. Java method calls are limited to 12
parameters.

� LotusScript can access all Java values and classes; however, there is no
mechanism for Java to access LotusScript objects directly.

12.6.5 Automatically add Option Declare
Many programmers’ customary practice when developing for Domino is the use
of “Option Declare” or “Option Explicit”. Leaving this out is a huge source of

Tip: For more information on using LS2J and how to invoke methods in Java,
refer to the Lotus Domino Designer 6 Help database.
 Chapter 12. New features in Domino 6 397

errors, and for that reason there is a new feature in Domino 6 that enables you to
set this to be included as default.

When Option Declare is enabled, this forces the developer to declare all the
variables that are used in that module. If you try to use variables without
declaring them first, the compiler gives you an error.

The option can be set by enabling Automatically add “Option Declare”, which is a
property of the programmer’s pane:

Figure 12-29 Automatically add Option Declare

12.6.6 Language enhancements
As mentioned earlier in this section, LotusScript has been enhanced a lot, so
refer to the Lotus Domino Designer 6 Help database for the complete list and the
accompanying information. Here are a few of these new functions:

� Implode or Join

Resembles the @Implode function. Concatenates all members of an array of
strings and returns a string. Elements of the array are separated by a
delimiter, if provided, or the space character (“ ").

Example 12-2 The implode function

Sub Initialize

Dim array(2) As String

Tip: Setting and enabling properties on the Programmer’s pane affects your
Domino Designer 6 Client in general, not just for the active database. It means
that every new object will have the Option Declare by default on its (Options)
event.

Note that Option Declare is not added to existing objects, only the ones you
create after setting the option on.
398 Domino Designer 6: A Developer’s Handbook

Dim sArray As String

array(0) = "Rune"
array(1) = "Peter"
array(2) = "Grant"

sArray = Implode(array, "&")

Msgbox sArray

End Sub

This code creates a string that concatenates all array values, with a delimiter
of “&”. The result of the agent would look like this:

Figure 12-30 Result from an implode

� Replace

Resembles the @ReplaceSubstring function. Replaces specific words or
phrases in a string with new words or phrases that you specify.

� Split

Resembles the @Explode function. Returns an array of strings that are the
substrings of the specified string.

� StrToken

Resembles the @Word function. Returns a specified word from a text string.

12.7 Auto complete
Auto complete is a feature that will both speed up the development and help get
the right formatting done more easily. It will look up and paste the syntax
elements directly into the Programmer’s pane, as you start to enter your code.
This code can be LotusScript, @formula, or HTML. The auto completion uses
type-ahead functionality to let you quickly find and select the options you want
and need.
 Chapter 12. New features in Domino 6 399

Enabling auto complete
Auto completion is enabled by default in Domino 6, but you can change the
settings for auto completion to suit your needs.

Options of auto complete
By selecting the options tab on the Programmer’s pane, you can set options on
the auto completion:

Figure 12-31 Auto complete options

The following settings apply to all languages.

Table 12-8 Settings for auto complete in the Programmer’s pane

Tip: If you decide to disable auto completion, you can still use the menu
commands or accelerator keys to display the pop-up lists or boxes. The
accelerator key for auto completion is Ctrl+Alt+t and the menu command can
be accessed using Edit -> List Members. This menu or shortcut can only be
used in the Programmer’s pane.

To display a parameter box, if one is applicable in this situation, you can do
either Edit -> Parameter info or by pressing Ctrl+Shift+Space

Option Description Default

Auto List Member box A pop-up list of available
options automatically
displays when you begin
typing code.

Enabled. Deselect to
disable.

Auto Parameter Popup
box

If an option has a
parameter list, a pop-up
box with a parameter
prompt appears when you
type a language-specific
trigger, such as an open
parenthesis (() for
@functions.

Enabled. Deselect to
disable.
400 Domino Designer 6: A Developer’s Handbook

12.7.1 LotusScript and auto complete
When you add LotusScript in the Programmer’s pane, follow these simple
conventions to use auto completion:

1. When declaring an object using the Dim statement, enter the word “As”
followed by a space to trigger the pop-up list of available classes, as in this
example:

Dim doc As[SPACE]

2. From the pop-up list, you can either type ahead to select the class you need,
or scroll through the list and select it. Press Enter to paste the class into the
Script area and close the list; see Figure 12-32.

Figure 12-32 Auto complete when declaring an object in LotusScript

3. To see a list of available properties and methods for a class, enter a period (.)
after an object name.

Delay box The value is the amount of
time to wait between a
trigger keystroke and
another keystroke before a
pop-up list displays. If you
type a second keystroke
before the time has
elapsed, the pop-up list
does not appear. The
value is in milliseconds.

200 milliseconds.

Option Description Default
 Chapter 12. New features in Domino 6 401

4. From the pop-up list, you can either type ahead to select the element you
need, or scroll through the list and select it. Press Enter to paste the element
into the Script area and close the list; see Figure 12-33.

Figure 12-33 Auto complete of methods on the current object using LotusScript

5. If a method has a parameter list, type an open parenthesis (() to display a
pop-up box with the parameter list. The syntax of the first parameter appears
in bold.

6. Type a comma (,) after each parameter. The syntax of the next parameter in
the string appears bold.

Figure 12-34 Type-ahead of parameters on methods using LotusScript

7. Type a closing parenthesis ()) or press Esc to close the pop-up box.
402 Domino Designer 6: A Developer’s Handbook

12.7.2 HTML and auto complete
HTML auto completion is now available for HTML pass-through code in forms
and pages. To enable and take advantage of this feature for HTML, we need to
use another new feature called HTML Pane. This is covered in 12.9, “HTML” on
page 412.

12.7.3 Formulas and auto complete
As with LotusScript and HTML, @formulas also support type ahead and auto
completion. In the Programmer's pane, follow these conventions to use auto
completion:

1. Both @function and @command auto complete are triggered by pressing the
at (@) symbol. A pop-up list of available @functions and @commands
appears.

2. From the pop-up list, you can either type ahead to select the function or
command you need, or scroll through the list and select it. Press Enter to
paste the function/command into the Script area.

Figure 12-35 Auto complete for @formulas, functions and commands

3. If the function has a parameter list, type an opening parenthesis (() to display
a pop-up box with the parameter prompt. The syntax of the first parameter
appears in bold.

Type a semicolon (;) after each parameter. The syntax of the next parameter
in the string appears bold.

Type a closing parenthesis ()) or press Esc to close the pop-up box.
 Chapter 12. New features in Domino 6 403

Or:

If the command has a parameter list, type a semicolon (;) to display a pop-up
box with the parameter list. The syntax of the first parameter appears in bold.

Type a semicolon (;) after each parameter. The syntax of the next parameter
in the string appears bold.

Type a closing parenthesis ()) or press Esc to close the pop-up box.

12.8 Agent enhancements
The agent architecture has been changed in Lotus Notes/Domino 6, and there
are several new security paradigms. While these change the complex and
underlying aspects, there are also some other new features.

For more information about agents, refer to Chapter 7, “Domino Design
elements: agents” on page 247.

12.8.1 New user interface
There are three new user interface features:

� New agent builder

The new agent builder is now a property box and makes all previous choices,
all well as new ones, easily accessible and consistent with other design
elements in Domino Designer. Most of these properties and settings are
available in previous versions as well, but not as part of an agent builder in a
property box; see Figure 12-36 on page 405.
404 Domino Designer 6: A Developer’s Handbook

Figure 12-36 New user interface

� All personal agents are now visible to any Manager.

As manager of a database, you can now see all agents created by users as
private agents in the database (Figure 12-37).

Figure 12-37 Personal agents visible to any manager in an agent list

� Enabling and disabling agents.

You can now, directly in the list of agents, use action buttons to enable and
disable scheduled agents (Figure 12-38 on page 406).

Note: If you, as manager of a database, re-sign this agent by opening it and
saving it, or by signing it with the sign feature of the Designer 6 Client, be
aware that the agent will remain personal, but it is now the database
manager’s personal agent. It will disappear from the list of personal agents
from the user who created the agent in the first place.
 Chapter 12. New features in Domino 6 405

Figure 12-38 Enabling and disabling agents

12.8.2 Agent restriction list
The agent restriction list for the current server has been expanded. Agent
restrictions are usually an area that your Domino Administrator takes care of.
However, it is very important for you, the developer, to understand how the
restrictions work. The restrictions in Domino 6 have a more granular structure.
They apply to all kinds of agents (LotusScript, Java, Simple actions, Formula).
These are the new agent restriction lists:

� Unrestricted

Lists who can run and have all rights to perform all agent operations, including
all programmable languages and interfaces.

� OnBehalf of anyone

Lists who can and have the rights to create and sign agents that can run on
behalf of someone else, as a scheduled agent.

� OnBehalf of invoker

Lists who can and have the rights to create agents that will be executed on
behalf of the invoker.

� Script libraries

Lists who have the rights to sign script libraries.
406 Domino Designer 6: A Developer’s Handbook

Figure 12-39 Security settings in the server document

12.8.3 Access remote servers
With Domino 6, it is possible to access remote servers with your agents. The
remote server’s server document needs to have the server you are using listed in
the Trusted servers field (Figure 12-40). By having a server name in this field the
server assumes that the trusted server has authenticated the user.

Figure 12-40 Remote access

Note: These are all settings in the server document and are usually
maintained by the Domino server administrator.
 Chapter 12. New features in Domino 6 407

Explanation:

� Remote server B must fully trust server A.

This is a new setting in the server document, which must be enabled by the
Domino administrator. It is a field called “Trusted servers” and the server
trusts that the servers listed in the fields have been authenticated
(Figure 12-41).

Figure 12-41 Trusted servers in server document, security section

12.8.4 Run on behalf of
Lets you specify on whose authority this agent can run. Note that restricted
signers can run agents only under the same authority as their own (that is, the
restricted signers enter only their own name or else the agent returns an error at
runtime). This gives you the possibility to have users who are allowed to sign
agents that will be executed on anyone else's behalf or on behalf of the invoker.

12.8.5 Script libraries
In previous versions of Lotus Notes/Domino, all code in a script library runs under
the agent signer and authority. Now, you can control who is allowed to sign script
libraries.

When running an agent now, which include a script library, it will enforce a check
if the signer of the agent has rights to access and run the script library. This
check will not run, however, if:

� The field “Sign script libraries to run on behalf of someone else” is blank. You
will find this field in the Security tab of the server document in your Domino
directory.

Note: This defaults to anyone for backwards compatibility.
408 Domino Designer 6: A Developer’s Handbook

� Agent and script library signers are the same.

� The script library signer is Lotus Notes Template Developers.

� The script library signer is the server on which the agent is running.

� The script library signer is unrestricted.

12.8.6 User activation
In previous versions, only designers as determined in the ACL can enable and
disable agents in a database. That is not the case in Domino 6 any more. You
can now allow non-designers to enable agents.

The ideal thing would be to give mail users only editor access to their mail file. In
version prior to Notes 6 this led to problems with “out of office” functionality, since
the users needed designer access to enable these agents as well as rights to run
LotusScript agents.

In Notes 6, users with editor access can activate agents, if that is allowed, using
the new property “Allow user activation” for the agent. The editor can only enable
and disable the agent, not sign the agent.

How to configure user activation
These are requirements for user activation to take place:

� “OnBehalf” is set to a user who is an editor.

� The “Allow user activation” property enabled.

� The agent is signed by an “Unrestricted” or “OnBehalf of anyone” signer.

Now, a user can activate an agent with only editor access, and the user is not
listed in the “Run Restricted agents” field.

Important: In order to have access to sign and run the script libraries, the
script library signer has to do both of the following:

� Appear in the “Sign script libraries to run on behalf of someone else” field.

� Appear in one of the fields that gives the signer unrestricted access (“Sign
agents to run on behalf of someone else” or “Run unrestricted methods
and operations”).

Tip: In the Notes versions before 6, when enabling an agent, you also signed
it, and you had to have designer access. In Notes 6, when the “Allow user
activation” is enabled, the user will not sign it with editor access, just run it.
However, if the user is a designer, it will be signed and run.
 Chapter 12. New features in Domino 6 409

12.8.7 Agent security
Beginning with Domino Designer 6, you can set up basic security for an agent by
using the Security tab of the Agent Properties box. This tab contains the options
listed in Table 12-9.

Table 12-9 Agent security in Domino 6

12.8.8 Converting shared and private agents
One major enhancement considering agents is that they can now be converted
to shared or private, or vice versa, independent of their previous state.

Option Description

Run as Web user When enabled, the agent is run with the effective
user rights of the Web user.

Run OnBehalf of Lets you specify on whose authority this agent can
run. Note that restricted signers can run agents only
under the same authority as their own (that is, the
restricted signers enter only their own name or else
the agent returns an error at runtime). Unrestricted
signers can run agents on behalf of anyone.
Whoever you specify in this field has to be included
in the ACL of any database being accessed.

Allow remote debugging Checking this enables the agent to be debugged
through a remote debugger. Only LotusScript can be
remotely debugged; however, you can monitor the
execution of agents written in Java.

Restricted operations Lets users who have unrestricted rights specify
whether the agent should run in restricted or
unrestricted mode. This option has no effect on
users with restricted rights.

Allow user activation Checking this box allows users with ACL editor
access or higher to enable agents. This allows a
scheduled agent on the server to be enabled or
disabled without resigning the agent.

Default access for viewing and
running this agent

The default level for viewing and running the agent is
"All readers and above." You can deselect this field
and choose who you want to have default access for
viewing and running the agent.

Allow public access users to
view and run this agent

Lets users who have public access to documents in
a database view and run the agent.
410 Domino Designer 6: A Developer’s Handbook

Converting agents can be performed using the agent’s property box
(Figure 12-42).

Figure 12-42 Converting private and shared agents

12.8.9 New console commands
There are a few new console commands that handle agents. These are:

� load amgr -h

Gives you a help index for the agent manager.

� tell amgr run “database name” ‘agent name’

Runs an agent in a separate thread.

� tell amgr cancel “database name” ‘agent name’

Aborts an agent currently running on the server.

� show agents [-v] “database name”

Shows all agents in a database, and with the verbose format, also script
libraries, with additional information; Figure 12-43 on page 412.
 Chapter 12. New features in Domino 6 411

Figure 12-43 Agent information using “show agents”

12.9 HTML
Lotus Notes/Domino has supported HTML and pass-through HTML for ages, and
now in Domino 6 there are new features for editing and rendering HTML.

12.9.1 Enabling the HTML Pane
With Domino Designer 6 you can add a new pane into the Designer client—the
HTML Pane. To enable this new pane, you need to have some HTML on your
form/page. Without HTML, there is no point having an HTML Pane available, so
this new menu and feature element is context sensitive.

1. Type some HTML code in your form.

2. Make this code pass-through HTML.

To make your code pass-through HTML, mark your code/text and choose
Text-Pass-Thru HTML from the menus. Your text/code will now be shaded as
shown in Figure 12-44 on page 413.

Note: Context sensitive means that elements are available only from where
they should be available. For the HTML Pane, this means that you will not be
able to enable this pane unless you are in a form or page, and that you in fact
are currently inside a pass-through HTML text.
412 Domino Designer 6: A Developer’s Handbook

Figure 12-44 Pass-through HTML in a form

3. Place your cursor somewhere in the HTML code.

4. Choose View -> HTML Pane.

This gives you a new pane directly in your Domino Designer 6 (Figure 12-45).

Figure 12-45 HTML Pane
 Chapter 12. New features in Domino 6 413

This is the new HTML Pane. The lower part of the window (similar to the
Programmer’s pane), is where you will add and remove your HTML code. The
upper part of the window is a preview of what your code would look like
viewed through a browser or even a Notes client. Since it is not a live preview
window, you will need to click Refresh in the upper left corner whenever
you’ve made some changes to the HTML and want to view the result.

5. To go back to your regular form, choose View -> HTML Pane, to deselect
your HTML Pane.

12.9.2 Adding code using the HTML Pane
When you have completed the steps described in 12.9.1, “Enabling the HTML
Pane” on page 412, you are ready to add some more code on your form. This
section explains the HTML Pane’s capabilities and features.

With the HTML Pane available, you can edit and change the code of your choice
in the pane. All your code is added back to the form when saving and leaving this
pane.

The HTML Pane supports type-ahead coding. If you want Domino Designer 6 to
help you and propose and give you type-ahead of the tags and properties
available, make sure this is enabled, as described in “Enabling auto complete” on
page 400. This is enabled by default.

As you can see in Figure 12-46 and Figure 12-47 on page 415, HTML
type-ahead is supported for both tags and properties:

Figure 12-46 Type-ahead for HTML tags
414 Domino Designer 6: A Developer’s Handbook

Figure 12-47 Type-ahead for HTML properties

So, after adding some code and switching back to the normal form look, you
might have something like Figure 12-48.

Figure 12-48 HTML example built with HTML Pane

The example in Figure 12-48 shows simple HTML code, with some tags
and some <table> tags. Previewing this on a Web browser would look like what
Figure 12-49 on page 416 shows.
 Chapter 12. New features in Domino 6 415

Figure 12-49 HTML in a Web browser

Now, with Domino 6, you can also preview the HTML code directly in your Notes
6 client. This new feature also applies when including style sheets and other
elements common to HTML. This allows you to use Domino Designer 6 to
develop code that is available and can be rendered in multiple clients
(Figure 12-50).

Figure 12-50 HTML in a Notes 6 client

In this example, we added styles to the text directly using the “style” tag.
416 Domino Designer 6: A Developer’s Handbook

Using style sheets on form and pages
The use of style sheets on forms and pages does not work directly in
pass-through HTML code. Style Sheet Resources apply styles directly to some
Notes elements, and these elements are well documented in the Lotus Domino
Designer 6 Help. Notes elements that support Style Sheet Resources are the
document, paragraph, list item, layer, table, table cell, and image. Fields do not
directly support Style Sheet Resources. Field contents inherit styles for an
inheritable property. For Web clients, however, these style sheets apply as usual.

12.10 New UI elements
There are a couple of new UI elements that the designer can utilize in Domino
Designer 6. This section explains and describes these elements and how to use
them.

12.10.1 Layers
You can now control and position overlapping blocks of content on a page, form,
or subform. With layers you can control your placement, size, and content of
information. These layers can both be transparent and opaque, so a stack of
layers can in fact reveal layers underneath and hide others.

The content of a layer depends on where you add the layer. If you create it on a
form, then you can add text and graphics, controlled-access sections, fields, and
subforms. These are elements that normally can be added to a form. If the layer
is created on a page, this layer can only contain the same elements that a page
can contain, like text and graphics.

Use layers for the following:

� Grouping design elements
� Absolute positioning
� Overlapping contents

Once a layer is created, you can change the following properties of the layer:

� Position
� HTML properties
� Background color and image

Creating a layer
Follow these steps to create a layer on your form, page, or subform:

1. Open/create a form, page, or subform.
 Chapter 12. New features in Domino 6 417

2. Choose Create -> Layer.

You now get a layer, which is a rectangular element with borders and a Layer
Anchor icon in the top left corner; see Figure 12-51.

Figure 12-51 New layer

Positioning the layer
If you need to, you can change the position of a layer in several dimensions by
changing its properties, as follows:

1. Select the layer.

2. Choose Layer -> Layer Properties and click the Positioning tab.

3. Choose a position and position value, as described in Table 12-10.

Table 12-10 Positioning a layer

Layer position Description Default value

Top Specifies the location of the top
edge of the layer.

"Auto" aligns the top of the
layer vertically with its
original location (insertion
point).
418 Domino Designer 6: A Developer’s Handbook

A layer with a higher Z-Index value (for example, layer A) is located closer to the
user; that is, it is stacked in front of a layer with a lower Z-Index value (for
example, layer B). If the layers overlap and layer A is opaque, the contents of
layer A obscure the contents of layer B. In addition, the contents of layer B cannot
be clicked or selected, even if layer A is transparent.

A negative Z-Index is placed behind the parent element's contents (so that it
cannot be clicked or selected); a positive Z-Index (>=0) is placed in front of the
parent element's contents (and prevents overlapped parent element (form, page,
or another layer, for example) content from being clicked or selected)

Left Specifies the location of the left
edge of the layer. For example, a
value of 96 units indicates that the
left side of the layer is located 96
units from the left edge of the
parent element.

"Auto" aligns the left edge
horizontally with its original
location (insertion point).

Width Specifies the width of the layer, a
value based on the location of its
right edge relative to its left edge.

One-third of the width of the
window or the parent
element, whichever applies.

Height Specifies the height of the layer, a
value based on the location of its
bottom edge relative to the top
edge.

One-third of the height of the
window or the parent
element, whichever applies.

Z-Index Specifies the stacking order of the
layer; that is, how close to or far
from the front of the parent
element the layer is located.

0; that is, in front of the
parent element.

Tip: You can also position the layer by dragging and dropping it anywhere in
the page or form. This is often much easier than trying to experiment with the
positioning values.

You can also select multiple layers and move them simultaneously. To select a
layer hold Shift down and click on the layers and move them. You can also
select multiple layers by selecting a layer and then selecting Layer -> Select
-> All siblings or All children.

Layer position Description Default value
 Chapter 12. New features in Domino 6 419

Setting HTML properties
The layer element is supported for use in Web browsers as well, and if you are
designing an application for the Web and are using HTML 4.0, the HTML tab lets
you apply some attributes to layers.

Follow these steps to set your HTML properties:

1. Select a layer.

2. Choose Layer -> Layer Properties and click the HTML tab.

3. Specify HTML attributes, as described in Table 12-11.

Table 12-11 HTML properties for the layer element

Hiding a layer
You can hide your layers if you want, and there are basically two ways to hide a
layer, depending on the situation:

� Using Hide-When

� For the current session only

You can hide your layers by using the Hide-When properties of the paragraph
containing the layer anchor, just like any other elements. Hide-When is described
in “Paragraph Hide When tab” on page 113.

Note: Do not include quotation marks when you enter the attributes in the
various HTML tab fields, except in the Other field.

Tag Description

ID The ID attribute. This is the name of the layer object.

Class Use the Class attribute to apply a CSS class for a
defined object.

Style Use the Style attribute to apply a specific CSS style to
an object using inline CSS.

Title Generally use the Title attribute in Explorer 4.x and
later to provide the user with a tip or prompt.

Other Use the Other attribute for additional HTML tag
attributes, which must be written as pure HTML code.

Note: If a layer anchor is contained in a collapsed section or in a row that is
not currently visible, of a tabbed table, the layer and its contents are not visible
until the collapsed section is expanded or until the row is current.
420 Domino Designer 6: A Developer’s Handbook

If you want to hide the layers for the current session only, then use the Layer Tree
dialog box:

1. Open a page or form and create one or more layers.

2. Choose Design -> Layer Tree. The Layer Tree dialog box appears listing all
the layers (and their hierarchies) on the page or form.

3. Select a layer. Click Hide/Show to hide or show the layer while you edit the
form or page in Designer.

4. To hide all layers for the current session, click Hide All. To show all layers for
the current session, click Show All.

5. Click Close.

Example of using layers
Earlier in this chapter, we created a layer, shown in Figure 12-52.

Figure 12-52 A single layer on a form

We then resized the first layer and inserted another layer to the right of it; see
Figure 12-53 on page 422.

Tip: You can easily set many of the settings of a layer to be the same as those
of some other layer. Select both layers and set desired properties.
 Chapter 12. New features in Domino 6 421

Figure 12-53 Two layers

Now let’s add some information in these two layers, using tables, text and fields;
see Figure 12-54 on page 423.
422 Domino Designer 6: A Developer’s Handbook

Figure 12-54 Layers with content

If we now preview this form with layers in the Notes 6 client; see Figure 12-55 on
page 424.
 Chapter 12. New features in Domino 6 423

Figure 12-55 Layers in Notes 6 client

If you want to reorder these layers, and change their location on the screen, this
is easily done, since layers are fully movable and controllable and can be placed
anywhere, as shown in Figure 12-56 on page 425.
424 Domino Designer 6: A Developer’s Handbook

Figure 12-56 Overlapping layers

After completing the move and customization of the placement of the layers, as
shown in Figure 12-57 on page 426, it will look as for the Notes 6 client.
 Chapter 12. New features in Domino 6 425

Figure 12-57 Changed places in Domino Designer 6
426 Domino Designer 6: A Developer’s Handbook

Figure 12-58 Changed places in Notes 6 client

Web support
The layer element is supported for use in Web browsers as well, and if you are
designing an application for the Web and are using HTML 4.0, the HTML tab lets
you apply some attributes to layers, as explained in “Setting HTML properties” on
page 420.

Figure 12-59 on page 428 shows the same form with layers (after some further
repositioning) in Internet Explorer.
 Chapter 12. New features in Domino 6 427

Figure 12-59 Form with layers in Internet Explorer

12.10.2 New field types
Domino 6 has three new field types: Color, Rich Text Lite, and Time Zone.

Color
A Color field lets you display a color picker on a form. The color you choose is
stored in a hexadecimal format. You can use the field, for example, to get input
from a user and change a color of the background or text based on that. The
Color field looks as in Figure 12-60 on page 429.
428 Domino Designer 6: A Developer’s Handbook

Figure 12-60 Color field

Rich Text Lite
When you need to collect, store and display formatted text in a field, embedded
or attached objects and elements, you have a new option in addition to the Rich
Text fields: Rich Text Lite fields.

Rich Text Lite fields are Rich Text fields with a helper icon and down arrow next to
the field. Clicking the icon gives the user a fast way to add text, an object, or an
element into the Rich Text Lite field. Clicking the down arrow displays a
drop-down menu. The elements listed in the drop-down menu are the only
elements the user is allowed to insert into the Rich Text Lite field. Any attempt to
paste a non-allowed element into this field causes an error message. This is a
good way to limit the input from the end user, and restrict what can be added in
Rich Text fields.

You can select or deselect one or more of the following object types (the object
types selected have a check next to them):

� Pictures
� Shared Images
� Attachments
� Views
� DatePicker
� Shared Applets
� Text
� OLE Objects
 Chapter 12. New features in Domino 6 429

� Calendar
� Inbox

Creating a Rich Text Lite field
To add a Rich Text Lite field to a form, select Rich Text Lite from the field type list
on the Field Info tab of the Field Properties box (Figure 12-61).

Figure 12-61 Designing and limiting inputs to the field

At the Control tab of the Field Properties box, check the object types you want to
add to the drop-down menu that appears when the user clicks the down arrow.

Figure 12-62 shows how Rich Text Lite would look to the end user in Notes.

Figure 12-62 Rich Text Lite, to an end user

Note: If you select only one of these object types, no down arrow appears
because there is no need to change types.
430 Domino Designer 6: A Developer’s Handbook

After a user has selected to show an Inbox, the document looks as shown in
Figure 12-63.

Figure 12-63 Rich Text Lite, with an inbox inserted

Time zone
A time zone field lets you display a drop-down list of all available time zones in
the world, including the local time zone. Each time zone listed includes a partial
list of the cities or locations found in that time zone; see Figure 12-64.

Figure 12-64 The Time Zone field
 Chapter 12. New features in Domino 6 431

12.10.3 Embedded editor
Embedded editor is a new element that can be embedded in your forms. There
are two situations in which you would utilize this new feature:

� Embedding one or more forms into an existing form

� Embedding an editor that again links to an embedded view

Embedding one or more forms into an existing form
In an existing form, you can now embed another form, to be accessed and
treated as a separate form within the existing one.

1. Create a form or open an existing form.

2. In the form, place the cursor where you want to create the embedded editor.

3. Choose Create -> Embedded Element -> Editor.

The Insert Embedded Form dialog box appears.

You can choose one of the following options:

– None

This is the first choice under "Choose a form." Choose None if you want to
paste a document or anchor link into the embedded editor or if you want to
use targeting by linking an embedded editor to an embedded view.

– An existing form from the list of forms

The list of forms in the current database appears under "Choose a form."
To insert an existing form into the embedded editor, choose one of the
forms.

To insert a form from another database, select a database from the
pull-down list of databases and then choose a form listed under "Choose a
form."

– Insert form based on formula

To insert a form based on a formula, check “Insert form based on formula.”

4. Choose Element -> Editor Properties to open the Embedded Editor
Properties box. At the Info tab, you have the following choices:

Note: The data entered in an embedded form is saved with that form, and is
not part of the original form, generating one document for each of the forms.
To save content in the embedded forms, however, you need to do the save
while you are in this embedded form. If you save the main document, you do
not automatically create documents for all embedded forms.
432 Domino Designer 6: A Developer’s Handbook

– Name - Enter a name for the embedded editor. Entering a name is
necessary only if you are targeting to an embedded view.

– Size - Enter a size in inches for the width and height of the embedded
editor. Alternately, you can check “Fit to window” for the width and for the
height.

– Type and Value - These fields are automatically filled out, depending on
how the editor is created. The following values may appear:

• Link

Link appears in the Type field if you selected None in the “Insert
Embedded Form” dialog box. The fields next to the Type and Value
fields are both left blank. Link requires that you paste in a link that
you’ve already copied to the Clipboard. Click the Paste icon to paste in
this link. Note that you can paste in only an anchor or a document link.
Do not try to paste in a View or a database link.

• Named Element

Named Element appears if you selected an existing form in the “Insert
Embedded Form” dialog box. The field next to Named Element displays
as Form. The Value field contains the name of the form you chose in
the Insert Embedded Form dialog box.

– Hide action bar - Checking this causes the action bar of the form you
inserted (with the “Insert Embedded Form” dialog box) to be hidden. If it is
unchecked, the action bar is displayed.

– Disable scroll bars - Checking this causes no scroll bars to appear. If it is
unchecked, the embedded editor displays with scroll bars when all of its
content does not fit on the screen.

Preview documents selected from an embedded view
One of the useful things of this feature is the ability to preview documents
selected from an embedded view into an embedded editor. You can place one or
more embedded views on a form, and then link them to one or more embedded
editors.

1. Create a new form.

2. Choose Create -> Embedded Element -> Editor.

3. Select None in the "Insert Embedded Form" dialog box and click OK.

4. Choose Element -> Editor Properties. The Embedded Editor Properties box
opens.

5. Specify a name for the embedded editor and close the properties box.
 Chapter 12. New features in Domino 6 433

6. Choose Create -> Embedded Element -> View. The “Insert Embedded
View” properties box appears.

7. Choose a view and click OK.

8. Choose Element -> View Properties. The Embedded View Properties box
opens.

9. In the Target Frame (for single click) field, enter the name of the Embedded
Editor that you want to link to. Close the properties box.

10.Save and close the new form.

11.Create a new document with the form.

12.Highlight a document in the embedded view. The document loads in the
embedded editor. You can now edit that document in the embedded editor.
You can then switch to another document in the embedded view and continue
editing.

Figure 12-65 shows the end-user view of this.

Figure 12-65 Previewing selected documents
434 Domino Designer 6: A Developer’s Handbook

12.11 Outline enhancements
There are some new ways and features to handle outlines in Domino 6. This
chapter covers some of these enhancements.

12.11.1 Computed outlines
In Designer 6 it is possible to embed an Outline in a page, form, subform or Rich
Text Field based on formula (Figure 12-66). In this way you can offer a dynamic
navigation context to the user based on some condition. For example, you could
show different outlines for internal or external users, or based on access rights to
the database.

Figure 12-66 Embedding an outline based on a formula

To learn how to embed an Outline in another Design element, see 9.3,
“Embedded Outline” on page 309.

12.11.2 Pop-up text
In some cases you need to specify a label for the Outline entry and there is a
window size limitation for the label that you want to use. In this case, you can use

Tip: Combining the above with the Domino 6 feature InViewEdit, which
enables the end-user to edit documents directly in a view, makes the feature
even more useful, reducing the need for multiple open windows.
 Chapter 12. New features in Domino 6 435

the pop-up text. This new feature lets you specify a text to be displayed when the
user moves the mouse over the outline entry.

To learn how to specify a pop-up text, see 9.3, “Embedded Outline” on page 309.

12.11.3 Customizable twisties
You can make the display of the outline more attractive by using figures instead
of triangular twisties. In this way you have more graphical resources to develop
good looking interfaces.

You can specify the image directly from the Image Resource or choose one
based on formula, handling different contexts and conditions, turning your
application interface more dynamic and visually intuitive.

The info tab of the outline properties box Figure 12-67.

Figure 12-67 Embedded outline

12.11.4 Show folder unread information
This feature displays the number of unread documents in a folder. With this
feature enabled, users can easily see which folders contain unread documents
without going through each folder looking for them. The unread count is
displayed beside the folder’s name, as shown in Figure 12-68 on page 437.
436 Domino Designer 6: A Developer’s Handbook

Figure 12-68 Unread information for a folder

To enable this, you need to set a property on the embedded outline; see
Figure 12-69.

Figure 12-69 Enabling unread information for an embedded outline
 Chapter 12. New features in Domino 6 437

12.12 Actions enhancements
There are a lot of new features for actions in Domino Designer 6, and this chapter
covers most of these enhancements.

12.12.1 General changes
� System actions are no longer default-added to action bars.

System actions are six prebuilt actions related to document handling. Each of
them runs a system command such as forward, edit or send document. You
cannot modify what the system commands do. System actions are included in
the action menu, but not in the action bar by default. You can change this in
the properties, action by action.

System commands must now be inserted if needed, using Create -> Action
-> Insert System Actions, as shown in Figure 12-70.

Figure 12-70 Including system actions

� Easier handling and maintenance of actions.

You can easily drag and drop actions in the action list, to move them around,
and reorder them.

12.12.2 Computed labels
Computed labels are now possible. These let you, for example, personalize
action bars and actions, or compute them in ways that meet your needs:
438 Domino Designer 6: A Developer’s Handbook

Figure 12-71 Computed labels

To make a computed label as described in Figure 12-71, add the following
formula to the computed label window:

@Name([CN] ; @UserName) + ", click here to save the document"

12.12.3 Menu separator
There is a new type of action, the menu separator, that enables and makes it
easier to add separators in your application’s action bars. This action type adds a
separator to the resulting drop-down list, when using “Action with sub action”.

Figure 12-72 Menu separator

The line that separates the actions in the drop-down list is the menu separator
action. You select this type of action as you design your action in the action pane.

12.12.4 Checkbox action
There is a new type of action, the checkbox, that lets you show the state of an
item (checked or unchecked). If you choose checkbox, you can enter a value in
 Chapter 12. New features in Domino 6 439

the Value field (for example, a formula that evaluates to true or false). You can
also highlight the Click event in the Objects list of the Programmer's pane to enter
a Click value. If you want the action bar's state (checkbox) to be re-evaluated
when a different document becomes current, make sure to check the “Evaluate
actions for every document change” option in the Options tab of the Views
Properties box.

Example of using the checkbox action
To understand the complete relation of this example, refer to 14.9, “Sametime
connectivity” on page 641 for information about Sametime connectivity, and see
14.9.3, “Power of Sametime” on page 641.

The example in this chapter shows how you can Sametime-enable a Web
application by adding instant messaging capabilities. Clicking on a listed person
on a Web page gives you the possibility to chat directly with the listed person,
using Sametime functionality in a Web browser.

This example uses a list of hard-coded and predefined users that should be
available on the Web page. The more optimal solution would be to have a more
dynamic and end-user selective solution, letting the end user select whether he
or she should be available or not.

This solution could be achieved by clicking a button that runs a background
agent, and maybe returns a message box, prompting the status of the person.

An even better solution would be if the user could actually see the state of this
setting directly, without having to click a button to run some agent that will give
this status as part of a prompt. This can be achieved by using a checkbox action.

Let’s see how this can be implemented.

Assumptions
� The name of the Web application database is SametimeWebApp.nsf.

� A view of all users registered in this database, with their status, is called
lupSametimePeopleStatus.

Target
� An action button in the mail file that changes the state of the person’s status

� An action button that shows the state of the status in the Web application

Solution
First, add an action button in the ($Inbox) folder in the mail file, and set this action
button to the checkbox type, as shown in Figure 12-73 on page 441.
440 Domino Designer 6: A Developer’s Handbook

Figure 12-73 Checkbox action added

This adds a checkbox action to the Inbox folder of the mail file, as shown in
Figure 12-74.

Figure 12-74 Checkbox in the Inbox

Clicking this action should now change the status field in another database
(SametimeWebApp.nsf), for the current user. It should also be checked if the
status is Online, and unchecked if the status is Offline. This will easily let the
users select their status, and visually show whether they are Online or Offline in
the Web application database.
 Chapter 12. New features in Domino 6 441

This checkbox is checked if the value of the action is evaluated as True, and
unchecked if the value is evaluated as False. Clicking Value in the action
properties box, let us specify formula for the checkbox action. By adding the code
in Example 12-3, the formula will evaluate as True if the field SametimeStatus
has the value Online, and as False if the value is Offline or the field has any other
value.

Example 12-3 Value code of checkbox action

tmpDB := "SametimeWebApp.nsf";
tmpView := "lupSametimePeopleStatus" ;
tmpUser := @UserName ;

tmp := @DbLookup("Notes" : "NoCache" ; @DbName[1] : tmpDB ; tmpView ; tmpUser;
2) ;
@If(@IsError(tmp) ; @Return("") ; "") ;

@If(tmp = "Online" ; @True ; False)

To complete this task, the only thing remaining is to change the SametimeStatus
field in the Web application database when clicking the checkbox action. To
achieve this, we added the code in Example 12-4, in the click event of the
checkbox action button.

Example 12-4 Click event of the checkbox action

Sub Click(Source As Button)

Dim session As New NotesSession
Dim dbThis As NotesDatabase
Dim db As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Dim namUsername As NotesName
Dim sUsername As String

Set dbThis = session.CurrentDatabase
Set namUsername = New NotesName(session.username)
sUsername = namUsername.Canonical

Set db = session.GetDatabase(dbThis.Server, "SametimeWebApp.nsf")
If Not db Is Nothing Then

Set view = db.GetView("lupSametimePeopleStatus")
If Not view Is Nothing Then

Set doc = view.GetDocumentByKey(sUsername, True)

Note: The view in @DbLookup has two columns. The first one contains the
user name, the second the status.
442 Domino Designer 6: A Developer’s Handbook

If Not doc Is Nothing Then
If doc.SametimeStatus(0) = "Online" Then

doc.SametimeStatus = "Offline"
Else

doc.SametimeStatus = "Online"
End If
Call doc.Save(True, False)

End If
End If

End If

End Sub

Example 12-4 on page 442 uses the username as the key for finding the correct
document in the SametimeWebApp.nsf database.

If the user is offline in the Web application database upon opening his mail file,
then the checkbox is not checked, as shown in Figure 12-75.

Figure 12-75 Unchecked, not online

By clicking the action, the click event is performed, and the action button is
re-evaluated and is now checked, because the status in the Web application
database has been changed to Online. You can see this in Figure 12-76 on
page 444.

Note: This example supposes that the SametimeWebApp.nsf database is on
the same server as the mail file. This is not a requirement.
 Chapter 12. New features in Domino 6 443

Figure 12-76 Checked, online

12.12.5 Sub actions
There is a new feature called “Create Action with Sub Action”, which allows you
to create cascaded actions with sublevels of actions:

Figure 12-77 Action pane with sub actions

As you can see in Figure 12-77, the look and interface of the action pane is
changed as well.

How to create Action with Sub Action
There are two ways to create Action with Sub Action:

� Choose Create Action with Sub Action from the menu.

Or:

� Inside your action pane, right-click and select Create Action with Sub
Action.

Note: This example is based on changes in the inbox folder of a mail file.
Customizing the mail file is not recommended. The purpose of the example is
to highlight the strength of the checkbox action that lets you show the state of
an item.
444 Domino Designer 6: A Developer’s Handbook

12.12.6 Other features and enhancements
There are several new features with actions and action bars, and without going
into more detail, here are some of them:

� Hide actions for mobile clients

� Bar height on action bars

� Border styles on action bars

� Border effects on action bars

12.13 View enhancements
Many improvements and new features have been made for views. This section
highlights some of these.

12.13.1 Column colors
In Designer 6 you can set colors to be displayed in view columns. With this
enhancement you can represent information visually with colors. You can do this
in two ways:

� By specifying the color, RGB based, directly in the Programmer’s pane for the
column.

� By pointing the color settings to a profile document.

Example of column colors
In Notes client applications, you can set a column's background color and text
color programmatically by selecting the “Use value as color” option on the Info
tab of the Column Properties box and then supplying RGB coordinates in the
Programmer's pane as the value for the column. To be able to set the color of a
column, you need to enable the column option “Use value as color” as shown in
Figure 12-78 on page 446.

Tip: You can now create actions and actions with sub actions by right-clicking
in the action pane.
 Chapter 12. New features in Domino 6 445

Figure 12-78 Enabling column color

If you specify one set of coordinates (three numbers separated by colons), this
defines the color of the text. If you specify two sets of coordinates (six numbers
separated by colons), the first set of coordinates defines the background color for
the column, and the second set of coordinates specifies the text color.

To add text and background colors, we apply a column value of that column. But
the problem then is, how do we also show some content on that column? The
trick here is that all the columns to the right of the column where you specify the
colors, will appear in the colors you defined. Hide the column where you define
the colors, because showing those color coordinates to users makes no sense.

If you want just one column to be colored, then you have to put a hidden color
column to the left and right of the colored column. In the color column on the
right, you should switch back to the normal colors.

Let’s see how this would be done. Let’s start with a plain view, with four columns,
and no colors, as shown in Figure 12-79.

Figure 12-79 A plain view with no colors, in Domino Designer

What we want to achieve is to have different columns in a separate background
and text colors as follows:

� The first column will remain as the default, black text on white background.

� The second column will have black background with white text.
446 Domino Designer 6: A Developer’s Handbook

� The third column will have a light grey background with red text.

� The last column should have the normal background again.

� Each column should also have content data as well. To do all this, we need to
add some code for each column.

For the first column, there should be no code, since it should have the default
colors. So we only add a column value of the content we would like. For this
example, let’s use Firstname, which is a field in our example documents.

For the second column, we also need to add some code. What we could do, is to
add the RBG code as the value of this column, but this wouldn’t give us the
possibility to also add some real content to the column, like Lastname. We add a
hidden column to the left of the second column with the “Use value as color”
option turned on, and add the RBG code in this column. The column value of the
“Black background” column would be the field Lastname. This is shown in
Figure 12-80.

Figure 12-80 Adding a hidden column with the RGB code

Adding this column adds color to the hidden column as well as all the columns to
the right of it. In the Notes 6 client, this would look as in Figure 12-80.
 Chapter 12. New features in Domino 6 447

Figure 12-81 Column colors

As we can see in Figure 12-81, the second column, titled “Black background”, is
colored with black background and white text. But so are all the columns to the
right of this column.

Now we want to add a different color in the third column, titled “Light grey
background/red text”. But we would also like to have the value of the field Status
in this column. Because of that, we need another hidden column before the “Light
grey background/red text” column, with the “Use value as color” option turned on.
In that column we set the new RGB code, and for the “Light grey background/red
text” column, we add the Status as the column value. This is shown in
Figure 12-82.

Figure 12-82 Another hidden column with RGB code
448 Domino Designer 6: A Developer’s Handbook

The view would now look like Figure 12-83 in the Notes 6 client (colors may not
be clear in black/grey printout, but you should be able to see the contrasts).

Figure 12-83 Column colors in the Notes 6 client

And, finally, we want the last column, “Back to normal”, to have the regular colors,
as in the first column, and with the text “This is absolute normal” as the column
content. To do this, we once again add a hidden column with the “Use value as
color” option turned on; see Figure 12-84.

Figure 12-84 Another hidden column

And after adding a column value for the last column to “This is absolutely
normal”, our example would look like Figure 12-85 on page 450 in the Notes 6
client.
 Chapter 12. New features in Domino 6 449

Figure 12-85 Final result of column colors

12.13.2 Context-sensitive actions
To provide an intuitive and attractive application, you can use context-sensitive
actions. In order to use them, you must set Hide-When conditions for those
actions. Notes always evaluates the Hide-When conditions when the view is
opened and you can set the option “Evaluate actions for every document change”
in the view’s properties box to evaluate the Hide-When conditions each time a
document changes.

Figure 12-86 Context-sensitive actions

Example
Consider an example where you have a database that handles orders, and the
database has a view showing orders with different statuses. Then, you can
control an action button to be hidden if the marked document has a certain value.
For example, if the view contains both approved and pending orders, and you
select an “approved” document, then the action button for “Approve order” should
not be visible.
450 Domino Designer 6: A Developer’s Handbook

In Figure 12-87 we have four documents. For the marked document, Terje
Weiseth, you have an action button available: Approve.

Figure 12-87 Evaluate actions I

If you select another person, Rune Carlsen, this action button is no longer
available, because it is hidden based on the value of the field Status (it is already
approved). This can be seen in Figure 12-88.

Figure 12-88 Evaluate actions II

To enable your application for this feature, follow these steps:

� Check the “Evaluate actions for every document change” on the view property
for the view you want this feature. See Figure 12-86 on page 450.

� Add a Hide-When formula for the action in the selected view, for example:

Status = “Approved”

12.13.3 Customized icons
In Designer 6 you can choose your own images to be displayed as icons in a
view column. These images must be in the Image Resources. You can still use
the standard icons, of course.

Caution: Be aware that checking this option can have a serious impact on the
performance of your application.
 Chapter 12. New features in Domino 6 451

To set a customized image for an icon in a view column, select the “Display
values as icons” option in the Column properties box. Then, in the programmer’s
pane of this column, point to an image in the Image Resource; see Figure 12-89.

Figure 12-89 Customized icons in columns

12.13.4 Background images/grids
To develop a pleasing and user-friendly application you can specify an image to
be the background of a view. You can do this by choosing an image from the
Image Resources dialog box or specifying a formula for displaying an image
based on a certain condition. The formula is evaluated when the view first
displays.

Another enhancement in Designer 6 is that you can set a grid style for the view.
This adds borders for your rows and columns, making it easier to read the views,
especially if they have a large amount of data; see Figure 12-90 on page 453.

Note: Choose an image with appropriate size and colors that fits well in a
view. An image resource can be a GIF, BMP, or JPEG graphic. The
recommended size for a column icon is .2 inches wide and .18 inches high.
452 Domino Designer 6: A Developer’s Handbook

Figure 12-90 Grids in a view

The grids can be defined as part of the view property, and have several styles as
well. Choose the one that suits your needs.

To learn how to use a background image or to set the grids in a view, see
Chapter 6, “Domino Design elements: views, folders, and navigators” on
page 183.

12.13.5 Customize twisties
In Designer 6 you can customize the twistie images. Twisties are very useful in
views, more specifically in categorized columns and documents with response
documents.

In the previous releases of Lotus Notes, just the standard triangular was available
as the twisties image. Now in Designer 6, You can do it by choosing an image
from the Image Resources dialog box or specifying a formula for displaying an
image based on a certain condition. The formula evaluates when the view first
displays.

To learn how to define a twistie image see Chapter 6, “Domino Design elements:
views, folders, and navigators” on page 183

12.13.6 User customizations
In Designer 6, the user, by default, can customize a view in a variety of ways,
including resizing and reordering columns or setting color options. Changes
users make are maintained when they close and reopen the view. It’s a great
enhancement because the application developer can create a view for different
audiences, avoiding creation of several views to satisfy all the audience interface
needs.
 Chapter 12. New features in Domino 6 453

To set this feature, select “Allows customization options” in the views properties
box.

For more information about View customization, see Chapter 6, “Domino Design
elements: views, folders, and navigators” on page 183.

12.13.7 Create document from view
This feature lets the users create documents directly from the view, without
opening a new window. The users fill the fields in through the view columns. In
this context, the columns appear in edit mode. To set this feature, do the
following:

1. Select the “Create new documents at view level” option in the View’s
properties box.

2. Select “Editable column” in the Column’s properties box for the columns
where you want the user to enter data.

3. Add code to the view’s InViewEdit event to handle the document creation and
validation entries. You can program this event only with LotusScript.

Example 12-5 shows a sample of programming the view’s InViewEdit event to
create a document. In this sample database, there is a form with two fields:
Firstname and LastName. In the view we just allow the user to fill the Firstname
field.

Example 12-5 Create a document from a view

Sub Inviewedit(Source As Notesuiview, Requesttype As Integer, Colprogname As
Variant, Columnvalue As Variant, Continue As Variant)

Const QUERY_REQUEST = 1 ' values for RequestType
Const VALIDATE_REQUEST = 2
Const SAVE_REQUEST = 3
Const NEWENTRY_REQUEST = 4

' Editable column
Const COLUMN_FEATURE = "Firstname" 'programmatic name of column
Const FIELD_FEATURE = "Firstname" 'corresponding field name

Dim ws As New NotesUIWorkspace
Dim note As NotesDocument
Dim db As NotesDatabase

Set db = ws.CurrentDatabase.Database

If RequestType = NEWENTRY_REQUEST Then
 'Create a new document
454 Domino Designer 6: A Developer’s Handbook

Set note = db.CreateDocument()
note.Form = "frmPersons"

 ' Column Value is an array of items that you edited in place in the
view

Call note.ReplaceItemValue (FIELD_FEATURE, ColumnValue(0))
Call note.Save(True, True, True)

End If

End Sub

Explanation

The InViewEdit event runs several times, depending on the request that is being
performed.

� Query

This is when the user enters an editable view column entry.

� Validate

This is when the user exits an editable view column entry.

� Save

This is after validation of one or more view column entries in an existing
document.

In the view, use Ctrl-Click here to add a new document in the bottom of the view
to create a document.

An editable column appears in which to enter data. Fill this in and press Enter, or
click outside of the editable field to finalize the procedure.

A new document is created in the database; see Figure 12-92 on page 459.

Note: In the previous sample the code just handles the document creation.
 Chapter 12. New features in Domino 6 455

Figure 12-91 Create a document from view

12.13.8 Editing a document in a view
You can enable Notes users to edit fields of an existing document directly in a
view. The big advantage of this feature is that the document itself does not need
to be opened—editing takes place directly in the view. This is especially
beneficial for documents where users make only minor changes to few fields and
therefore can avoid opening the document in a separate window.

For in-view editing, there is a new event for a view, called InViewEdit, and the
developers have to enable the column to have this feature, “Editable column”. To
enable a view for this option, follow these steps:

1. Select “Editable column” in the Column’s properties box for the columns
where you want the user to enter data.

2. Add code to the view’s InViewEdit event to handle the document creation and
validation entries. You code this event only with LotusScript.

In this new event, we have to add some code that will make sure that the update
happens, and that validation takes place. Example 12-6 on page 457 shows an
456 Domino Designer 6: A Developer’s Handbook

InViewEdit LotusScript that enables InViewEdit to take place, accept all user
inputs, and update the document.

Example 12-6 Editing a document in a view

Sub Inviewedit(Source As Notesuiview, Requesttype As Integer, Colprogname As
Variant, Columnvalue As Variant, Continue As Variant)

Const QUERY_REQUEST = 1 ' values for RequestType
Const VALIDATE_REQUEST = 2
Const SAVE_REQUEST = 3
Const NEWENTRY_REQUEST = 4

' Editable column
Const COLUMN_FEATURE = "Firstname" 'programmatic name of column
Const FIELD_FEATURE = "Firstname" 'corresponding field name

Dim ws As New NotesUIWorkspace
Dim note As NotesDocument
Dim db As NotesDatabase

Set db = ws.CurrentDatabase.Database
Set note = db.GetDocumentByID(Source.CaretNoteID)
If (note Is Nothing) Then Exit Sub

If (RequestType = QUERY_REQUEST) Then
If(note.HasItem(FIELD_FEATURE)) Then

 'Get the current (original) value to put in Edit box
Columnvalue(0) = note.GetItemValue(FIELD_FEATURE)

Else
 'This doc does not contain the required field;
 'ignore it

Continue = False
End If

Elseif (RequestType = VALIDATE_REQUEST) Then
 'Accept any user input

Continue = True

Elseif (RequestType = SAVE_REQUEST) Then
Call note.ReplaceItemValue (FIELD_FEATURE, ColumnValue(0))
Call note.Save(True, True, True)

End If
End Sub
 Chapter 12. New features in Domino 6 457

Explanation

The InViewEdit event runs several times, depending on the request that is being
performed:

� Query

This is when the user enters an editable view column entry.

� Validate

This is when the user exits an editable view column entry.

� Save

This is after validation of one or more view column entries in an existing
document.

1. Before we edit the document, no events are influenced.

2. We click the document and column value we want to edit. This request is a
Query. This request then checks whether the marked document has the field
to be edited. If so, it sets a value of the field to a constant. If not, it exits the
sub.

3. Then, the next request is Validate, which validates the content. We have set it
to accept all inputs.

4. The next request is the Save request, which actually updates the document
by replacing the current value in the field with the new value and saves it.

These sequences are shown in Figure 12-92 on page 459.

Tip: CaretNoteID is a new property with Domino 6 that is the Note ID of the
currently highlighted (that is, at the caret location) document in a view.
458 Domino Designer 6: A Developer’s Handbook

Figure 12-92 InViewEdit

This is one example of how you can enable your views for InViewEdit events. You
can add validation and other routines as well. Refer to the Domino Designer 6
Help database for more information.

12.13.9 Hide columns on-the-fly
Another improvement in Designer 6 is the feature to hide view columns on-the-fly.
It means you can develop a view to serve different audiences, displaying different
columns for different users. The feature works both for Notes clients and Web
browser users.

To learn how to set Hide-When options for columns, see Chapter 6, “Domino
Design elements: views, folders, and navigators” on page 183.

Attention: The InViewEdit event is only supported in the Notes client.

Note: Hide-When formulas are not a security measure. Users can still get
information by viewing the document properties. Use this feature as a method
for controlling the display of information in a view.

Because the ability to selectively hide a column based on a formula is new in
Designer 6, columns hidden in this way will display in earlier releases of the
client unless you also check the option Hide in Notes R5 or before.
 Chapter 12. New features in Domino 6 459

12.13.10 Creating views programmatically
LotusScript enables you to programmatically add, customize, and delete views.
In Designer 6 there is a new method in the NotesDatabase class, CreateView,
where you can programmatically create a view, modify the properties of the view
and even delete a view. In this way you can create views and set their attributes,
such as columns, with LotusScript.

Example 12-7 Creating a view programmatically

Sub Initialize

Dim session As New NotesSession
Dim db As NotesDatabase
Dim view As NotesView
Dim viewCol As NotesViewColumn

Set db = session.CurrentDatabase
Set view = db.CreateView("viewMyNewViewName", |SELECT Form = "myForm"|)
Set viewCol = view.CreateColumn(1, "Firstname", "Firstname")
viewCol.HeaderAlignment = VC_ALIGN_RIGHT
viewCol.HeaderFontStyle = VC_FONT_BOLD

End Sub

Explanation
Example 12-7 creates a view programmatically with the use of the new method in
the NotesDatabase class, CreateView, and sets some properties of the new
column using the NotesViewColumn class. The CreateView method contains
several possible parameters, though we only used the first two in our example:

� viewName

This is the name of the new view. It defaults to “untitled” and is created even
though the name duplicates an existing view.

� selectionFormula

This is the selection formula you want to set for the view to determine which
documents are shown in the view. It defaults to Select @All, if none is
specified.

� formatNotesView

You don’t necessarily have to create the new view from scratch. Use this
property to specify an existing view, from which the new view is copied. If the
existing view has many of the attributes you need in your view, you can save a
lot of coding and execution time by using it.
460 Domino Designer 6: A Developer’s Handbook

� isProhibitDesignRefresh

Specify False to allow the view design to be refreshed. The default is True,
which prohibits the view design from being refreshed.

To set properties of the created view, use the NotesViewColumn class, which
includes several properties that can be “get” and “set”, as shown in Example 12-7
on page 460.

12.14 Field enhancements
We can now give field hints in Notes 6, as well as quite a few other good field
enhancements. This section covers the main enhancements with fields in
Domino 6.

12.14.1 Field hints
To create even more user-friendly user interfaces in Domino 6 applications, we
can now include field hints. These are explanations of each field in the
application. They are set as part of the field property, and show up as text in the
field. They disappear when the user enters the field; see Figure 12-93.

Figure 12-93 Field hints

12.14.2 Size options
There are some new size options for fields, regarding the size of the field, shown
in Table 12-12 on page 462.
 Chapter 12. New features in Domino 6 461

Table 12-12 New size options

12.14.3 Alignment options
“Align control’s baseline with paragraph’s” is a new property setting for a field,
shown in Figure 12-94.

Figure 12-94 Align control’s baseline

Property Choose one

Width Fixed (Size) - this lets you set a fixed width in inches

Fit to window - fits the field to the window as the
percentage you set.

Fixed (Characters) - this lets you set a fixed width in
characters.

Height Fixed - this lets you set a fixed height in inches.

Dynamic - this increases the size of the entry box
dynamically up to 3 lines. If an entry is longer than 3
lines, scroll bars display automatically.

Proportional - this sets the height proportionally to the
width.
462 Domino Designer 6: A Developer’s Handbook

If you check “Align control's baseline with paragraph's,” the baseline of the
characters in the field is aligned with the baseline of the characters in the
paragraph containing the field. This setting is especially useful if you have no
border around the field. The text in the borderless field will be on the same
baseline as the text in the paragraph containing the field.

Figure 12-95 Align control’s baseline with paragraph’s field property

Figure 12-95 shows an example of the use of this property. Take a look at the two
lines with the text Static text.... The lines are identical, except that the text in
the fields is aligned differently. The field on the first line has the “Align control’s
baseline with paragraph’s” property set on; the second line doesn’t.

12.14.4 Border styles
When we use “Native OS Style” for fields, we now have new border styles to
choose from; see Figure 12-96.

Figure 12-96 Native OS Style now have border styles
 Chapter 12. New features in Domino 6 463

12.15 Form enhancements
For basic information about forms, see Chapter 4, “Domino Design elements:
forms” on page 75.

12.15.1 Render pass-through HTML in Notes
Designer 6 has a tool for both Notes clients and Web application development,
which provides a new feature that enables Notes clients to evaluate HTML
placed in forms, subforms and pages. In this way it is easier for developers to
make their applications portable for both Notes clients and the Web without a lot
of workarounds to support several clients.

To allow Notes clients to process HTML, check “Render pass through HTML in
Notes” in the Form, Subform or Page Properties box.

Figure 12-97 Form Properties box
464 Domino Designer 6: A Developer’s Handbook

If you do not check "Render pass through HTML in Notes," the HTML appears as
plain text. You can hide it using the following formula for "Hide paragraph if
formula is true":

@ClientType = "Notes"

Or you can use the “Hide paragraph from Notes 4.6 or later” property.

Figure 12-98 shows HTML added in the Designer 6 client, as pass-thru HTML,
rendered in the Notes 6 client.

Figure 12-98 HTML rendered in the Notes client

If you refer to a field, the JavaScript code must follow the field on the form.

You can embed computed fields and computed text in HTML text on a form,
subform, or page.

You can place JavaScript in a URL using the "javascript:" protocol, for example:

prompt

You can run JavaScript from an agent by sending it to the browser as HTML
using print statements. For example, in LotusScript:

Print "<SCRIPT LANGUAGE=JavaScript>"
Print "code goes here"
Print "</SCRIPT>"
 Chapter 12. New features in Domino 6 465

To run a Domino agent from JavaScript, set the href property of the location
object to the URL for opening the agent. The URL can be relative to the current
host. For example:

location.href = "/dbname.nsf/agentname?OpenAgent&arg1=val"

12.16 Paragraph enhancements
Paragraphs have been enhanced and several new features have been added.
Among them is a language tagging feature. This chapter covers the most
relevant new features and enhancements in paragraphs.

12.16.1 Language tagging
Beyond Designer, there are a lot of new features for Notes Client 6 as well. One
of them is that you can mark some text of your document to a specific language.

One of the advantages of associating a language to a selection of text is for spell
checking. When you perform a spell check in the document, Notes knows to use
the correct dictionary based on the language tag set for the text. You must, of
course, have the language dictionaries installed to use this feature.

Figure 12-99 shows how to set a language tag for some selected text in a
document.

Figure 12-99 Language tagging

Note: The default language for text is Untagged. The spell checker uses your
default dictionary to spell check Untagged text. If you want the spell checker to
skip particular words in a document, mark the words as Unknown.
466 Domino Designer 6: A Developer’s Handbook

12.16.2 Paragraph borders
There is a new feature for text paragraphs in Designer 6. In the Text Properties
Box, an extra tab was added for paragraphs: the Paragraph Border tab.
Table 12-13 shows the properties you can set.

Table 12-13 Borders for paragraphs

Figure 12-100 Text Properties Box - Paragraph borders

12.16.3 New section styles
A good way to organize information in documents is by creating sections to group
related information, turning the application more intuitive and user-friendly, and
with an unpopulated interface. There are two types of section:

� Standard

� Controlled Access

You can restrict the users who can read and edit the content of the section.
You can also, programmatically, change these access control options.

You can use sections in forms, subforms, pages, and documents.

In Designer 6, there are four new border styles, shown in Figure 12-101 on
page 468.

Feature What you can set

Border style Border style and color

Border effects Border drop shadow and width

Inside/Thickness/Outside Border thickness for all borders (top,
bottom, left, right)
 Chapter 12. New features in Domino 6 467

Figure 12-101 Section - new border styles

To set the section border style, follow these steps:

1. Right-click the section name, then click Section Properties.

2. The Section Properties Box appears; see Figure 12-102 on page 469.

Closed Sections

Opened Sections
468 Domino Designer 6: A Developer’s Handbook

Figure 12-102 Section - Properties Box

3. Choose the appropriate border style and its color.

12.17 Embedded element enhancements
This section highlights some of the enhancements made to the elements you can
embed on a page, form or subform.

12.17.1 Improved action bar support and enhanced styling
You can now control the style and how the embedded element should behave, to
a considerably greater extent than in previous releases. Several of the embedded
elements have improved property boxes and enhanced styling options. Among
them are the embedded views and embedded scheduler property boxes; see
Figure 12-103.

Figure 12-103 Enhanced styling and control of embedded elements
 Chapter 12. New features in Domino 6 469

12.17.2 Cross-database referencing
When embedding elements, there is no limit, as in previous versions, that this
element must be in the current database. You can now select and
cross-database reference every embedded element by selecting the database
from which you want to embed.

12.17.3 Multiple embedded views on a page or form
Previous versions did not support multiple embedded views. Though you could
fake this by using complex workarounds, and solve it in a non-supported method,
there was no built-in method to solve this. Now, with Domino Designer 6, you can
embed as many views as you want on a page, form or subform. This means that
one single form can now contain several embedded views, with different
information. In some cases, you can avoid using frame sets and frames by
embedding multiple views on a single form.

Multiple embedded views work both in the Notes client and Web browsers.

Figure 12-104 on page 471 shows an example of multiple embedded views in a
Notes client.

12.17.4 Deleting documents in an embedded view
With previous releases of Notes/Domino 6, deleting marked documents in an
embedded view was impossible. Embedded views did not have the feature
“Show action bar” in R5, and if you had an action button on your form, that action
button would not work for the marked document in an embedded view. You can
still not use an action button on the form to delete a document in an embedded
view, which is understandable, but you can use the new feature and property for
embedded views, “Show action bar”.

Figure 12-104 on page 471 shows a form in a Notes client with multiple
embedded views, and a form view action removing a selected document in one
of these embedded views.

Note: The database from which you want to embed an element must be in
your bookmark.nsf database.

Tip: @DocumentDelete will not work for this purpose. You would use a
formula like the following for your action:

@Command([EditClear]);
@PostedCommand([ViewRefreshFields])
470 Domino Designer 6: A Developer’s Handbook

Figure 12-104 Deleting a document from an embedded view

12.18 Table enhancements
Tables have been enhanced and several new features for tables have been
added in Domino 6.

12.18.1 Autosize width to content
Now you can set autosize for the column width. In this way, Notes automatically
adjusts a column width based on its content. To set this feature, do the following:

� Select a cell or a range of cells, then click Table -> Autosize.

Or:

� Right-click the cell. In the list that appears, select Autosize.
 Chapter 12. New features in Domino 6 471

12.18.2 New options
A new enhancement was implemented for tabbed tables to make the display
more flexible and customizable.

Tabs on all sides
Now you can choose where you want to position the table tabs. It can be in the
top, bottom, right or left. You set this in the Table Properties Box; see
Figure 12-105.

Figure 12-105 Table properties with new settings

With this new feature, you can provide tabbed tables in different layouts. Refer to
Figure 12-106 on page 473.
472 Domino Designer 6: A Developer’s Handbook

Figure 12-106 New tabbed tables

Equally sized tabs
You can also set equal sizes for the tabs’ size. Lotus Notes automatically adjusts
the size of the tabs based on the longest tab label.

12.18.3 Caption style
A table that has collapsible sections is called a table with row captions. Row
captions look like maximize and minimize buttons for windows, and are used to
expand and collapse rows. Captions allow you to hide information in one row, but
display information in another.

Figure 12-107 shows an example of a table with three rows (Caption 1, 2, and 3)
and two columns, with the first captioned row expanded.

Figure 12-107 Table caption sample

Tab on top

Tab on right

Tab on left

Tab on bottom
 Chapter 12. New features in Domino 6 473

To give your table caption capabilities, set the “Users pick row via caption” option
and label the appropriated captions in the table properties box. See
Figure 12-108.

Figure 12-108 New feature for tables
474 Domino Designer 6: A Developer’s Handbook

12.19 Frameset enhancements
Framesets and frames have several new features in Domino 6. This section
covers the main areas.

12.19.1 Collapsible and captionable frames
In Designer 6 you can now use a caption for frames and turn them collapsible. In
this way, you can label the frames and allow wide navigation between the
collapsible frames, providing more information in the same screen area,
displaying it as you like; see Figure 12-109. This feature works only for the Notes
6 client.

Figure 12-109 Collapsed and expanded frames

The settings to provide such a frameset, with collapsed and expanded frames,
are controlled and set by properties of the actual frame, as shown in
Figure 12-110 on page 476.
 Chapter 12. New features in Domino 6 475

Figure 12-110 Frame properties to set to enable collapsible frames

The following explanations apply:

� The border caption

This text can be evaluated by a formula or be hard-coded. This caption is
optional and is used to explain to the end users what will happen if they click
the text or the arrow. Using the formula to evaluate this gives it all a more
personalized look.

� Show

You can choose None, Caption only, Arrows only, or Both. None shows the
default border with no caption or arrows. “Caption only” displays a caption in
the border. “Arrows only” displays an arrow in the border. This arrow lets you
open and close the frame. Both displays have a caption and an arrow in the
border.

� Align

For a caption, choose to align so that the caption appears inside the top or
bottom border of the frame. For an arrow, choose to align so the arrow
appears at the top, bottom, left, or right border of the frame. For both a caption
and an arrow, you can align top or bottom. Note that the border appears only
where the caption or arrows appear. For example, if you choose Top, then the
border displays at the top only.
476 Domino Designer 6: A Developer’s Handbook

� Justify

Choose to justify the caption or arrows so they appear to the left, right, or
center of the border.

� Open

Choose a size in pixels or as a percent of the frame. This size is the default
size that the frame opens to when the user clicks on the border of a closed
frame.

You can also specify text characteristics for the caption and arrows, such as font,
size, style, and color. In addition, you can specify a background color for the
border.

12.20 Tools menu
With Domino Designer 6, there is a new menu element called Tools. This is a
fully customizable and context-sensitive feature, which allows you to include
menu items that launch other applications or your own custom formulas. For
example, you might want to include a menu item to launch your favorite image
editor while you are in the list of images, or you might want to add a formula that
you can launch at any time which automates your design process.

To ensure that this list of tools will not be overly complex and difficult to follow,
you can specify when you want the tool to be available. You might need some
tools for every phase of your design work, and other tools for use with very
specific design activities, such as designing a page or a frameset. In this way,
you can personalize your application development process throughout your
Designer desktop, and have a fully context-sensitive tools menu.

12.20.1 Add a tool
To add a tool to Domino, do the following:

1. Select Tools -> Add Tool; see Figure 12-111 on page 478.

Note: To enable this feature, your frame must have the property “Allow
resizing” set to Yes. This setting is found in the property box of the frame, on
the second tab.
 Chapter 12. New features in Domino 6 477

Figure 12-111 Adding a new tool

2. Enter the name of the tool (Figure 12-112).

Figure 12-112 Setting tool preferences

3. Do one of the following:

– Select Run program to have a menu item launch a tool from within
Designer. Enter the path for the executable file or browse to select the
executable.

Tip: To make the tool accessible to users with physical disabilities, or for
convenience, specify a keyboard accelerator key for the tool name by putting
an underscore (_) before the letter you wish to use as the accelerator key.
478 Domino Designer 6: A Developer’s Handbook

– Select Run formula to launch a tool using an @command formula.

4. In the Tool Location section, specify one or more contexts when the tool
should be available. That is, if you do not want the tool to always be available,
choose the design elements where you might use the tool in your design
work. For example, if you select Form Design, the tool will be available during
form design; if you select Form List, the tool will be available from the tool
menu when you are in the list of forms.

5. Click OK.

6. The name of the tool appears on the Tools menu for the contexts. That is, if
you specified that the tool should always be available, it will always be on the
Tools menu. If you specified the tool should only be available for page design,
it will only display when a page has focus in the work pane.

12.20.2 Customize your tools
After you have added tools to the Tools menu, you can edit the tool names or
their associated formulas, delete one or more tools, organize tools into submenu
groupings, or change the context for a tool.

To add a submenu for tools
1. Select Tools -> Customize Tools.

2. Select a design context and click Add Submenu to add a submenu for that
context.

3. Enter a name for the submenu and click OK.

Figure 12-113 A new tool available with accelerator key
 Chapter 12. New features in Domino 6 479

4. Use drag and drop or the Copy and Paste buttons to move tools to the
submenu.

To move a tool to another design context
1. Select Tools -> Customize Tools. Click the arrow next to a design context to

display the tools associated with that context.

2. Select one or more tools.

3. Drag and drop the tools to a new context.

To copy, paste, or delete a tool
1. Select Tools -> Customize Tools. A dialog box displays the list of design

contexts.

2. Click the arrow next to a context name to display the tools associated with a
design context.

3. Select the tool name.

4. Click Copy to copy the tool to the clipboard.

5. Select the design context where you want to place the tool and click Paste.

6. Select a tool and click Cut to remove the tool from its original context.

To edit a tool
1. Select Tools - Customize Tools.

2. Click the arrow next to the name of a design context to display tools
associated with that design context.

3. Select the tool name and click Edit. You can edit the name of the tool and/or
the formula that it executes. Note that if you choose to run an executable
program from the menu, the action is represented as an
@command([Execute]) formula. You can change the name of the executable
file or customize the formula.

4. Click OK to confirm your changes.

Tip: To make the submenu accessible to users with physical disabilities, or
for convenience, specify a keyboard accelerator key for the submenu name
by putting an underscore (_) before the letter you wish to use as the
accelerator key.
480 Domino Designer 6: A Developer’s Handbook

Distributing tools using the DXL LotusScript classes
The Tools menu is a personal setting that is part of the Domino Designer
installation. Tools need to be added by each designer on their Domino Designer
client.

It is also possible to distribute a set of tools for a group of developers. You might
want all of your developers or a group of developers to have the following tools,
among others:

� Paint Shop Pro

� Notepad

� @Command([ToolsRefreshAllDocs])

When you add a tool in your Designer 6 client, these tools are added to an
outline in the personal bookmark.nsf database. This outline is called
DesignTools, as shown in Figure 12-114.

Figure 12-114 Outline for tools

Added tools will be part of this outline, as outline entries, as shown in
Figure 12-115 on page 482.
 Chapter 12. New features in Domino 6 481

Figure 12-115 Outline entries for tools

So, how can we use this knowledge to create a more dynamic distribution of
these tools to a set of developers? By adding some knowledge about DXL. All
design elements in Domino can be represented in XML, or, more precisely, in
DXL (Domino XML). Exporting the DesignTools outline to a DXL file, and creating
an agent that imports this DXL file back into a bookmark.nsf database, adds a
new dimension to the process of dynamically adding design elements to
databases.

Let’s see how we can do this:

1. Exporting the Design Tools outline to DXL

Select the DesignTools in the bookmark.nsf database, using Designer 6
Client, and select Tools -> DXL Utilities -> Exporter from the menu, as
shown in Figure 12-116 on page 483.

Note: If you add a tool for a program, for example Paint Shop Pro, you do not
install the program, but assume that it is available from the location you
specify. So by distributing tools to programs, you assume that your developers
have installed the programs on the same directories as the original client from
where the DXL file was created.
482 Domino Designer 6: A Developer’s Handbook

Figure 12-116 Exporting to DXL

This prompts for location and name of the DXL file. Give it the name
DesignTools.dxl as shown in Figure 12-117.

Figure 12-117 Naming the DXL file

Click Save.
 Chapter 12. New features in Domino 6 483

2. To show how this example works, let’s remove the tools that are available in
the Domino Designer 6 Client. Use the Customize Tools feature found in the
Tools menu line. In Figure 12-118 we select the tools to be removed, and click
Cut to remove them.

Figure 12-118 Removing tools

After removing these tools, no tools are available in the Designer 6 Client, as
shown in Figure 12-119.

l

Figure 12-119 No tools available

3. Importing tools into the Designer Client.

By using the new DXL LotusScript classes, we can now import design
elements into any database. Because bookmark.nsf is the database holding
the DesignTools outline, which again is the outline that contains the tools
available in the Designer Client, this is the database that should have the DXL
file imported. Example 12-8 on page 485 shows a script that imports the
specified DXL file into the local bookmark.nsf. For this example, let’s create
an agent in a database with this code.
484 Domino Designer 6: A Developer’s Handbook

Example 12-8 Importing a DXL file into a database

Sub Initialize

' ## Set the directory constant to reflect your settings
Const sDir = "h:\redbook\"
Const sFileName = "DesignTools.dxl"

Dim session As New NotesSession
Dim db As NotesDatabase
Dim dbTarget As NotesDatabase
Dim stream As NotesStream
Dim importer As NotesDXLImporter

Set db = session.CurrentDatabase
Set dbTarget = New NotesDatabase("", "bookmark.nsf")

' Open the DXL file(s)
Set stream = session.CreateStream
If Not stream.Open(sDir & sFilename) Then

Print "Could not open: " & sFilename
Exit Sub

End If

' Check the content of the DXL file
If stream.Bytes = 0 Then

Print "File did not exist or was empty: " & sFilename
Exit Sub

End If

' Import the DXL into the target database
Set importer = session.CreateDXLImporter(stream, dbTarget)
importer.ReplicaRequiredForReplaceOrUpdate = False
importer.DesignImportOption = DXLIMPORTOPTION_REPLACE_ELSE_CREATE
Call importer.Process

End Sub

Right-clicking the agent in the Designer 6 Client, as shown in Figure 12-120
on page 486, imports the DXL file specified in the agent.

Note: The agent uses a constant for the directory of the location of the DXL
file. In the above example, this constant, sDir, is set to h:\redbook\. Make sure
you change this to the directory you saved the DXL file in.
 Chapter 12. New features in Domino 6 485

Figure 12-120 Running the agent/script

4. The Tools menu now has the imported DXL file, and the available tools, as
shown in Figure 12-121.

Figure 12-121 Tools imported using DXL

There is no built-in method to dynamically distribute tools in the Designer Client,
but with the new DXL classes and methods you can accomplish this. This
example could be extended by putting the DXL file on a shared directory or
distributing it otherwise, and importing it in the background without any user
interference. This could easily be done by adding a script like Example 12-8 on
page 485as part of the PostOpen event of the mail file, or other possible
solutions.

You could also use the InstallShield Tuner for Lotus Notes to customize the
Domino Designer Client installation package. You could include the customized
bookmarks.nsf database with the installation package, and when a new user
486 Domino Designer 6: A Developer’s Handbook

installs a Domino Designer, the tools would automatically be added to the Tools
menu. For more information about InstallShield Tuner for Lotus Notes, refer to
Upgrading to Notes & Domino 6, SG24-6889.

12.20.3 DXL utilities
In addition to including XML in a Designer application, you can view all the
design elements represented in XML using Domino XML (DXL). For a more
in-depth discussion about XML and Domino, see Chapter 16, “XML” on
page 743.

You can either view the XML in Designer, or you can export the XML to a text file,
where you can view it or edit it using your favorite editor.

Accessing design elements in XML provides you with the means of accessing
the data in your application and comparing it to, or integrating it with, other data
sources that support XML. The DXL utilities can be a very flexible alternative to
generating reports on application elements using the Design Synopsis. You can
examine the DXL for a collection of elements, or you can transform it using an
XSL file to apply styles and formats that make your data more meaningful to you.

Viewing the XML for a design element
1. Check that you are running Internet Explorer version 5.01 or later.

2. Check your location document to make sure your Internet Browser field is set
to "Notes with Internet Explorer" or "Internet Explorer."

3. Select one or more design elements in the design pane.

4. Choose Tools -> DXL Utilities -> Viewer, as shown in Figure 12-122.

Figure 12-122 How to view XML of a selected design element

Designer displays the XML for the design elements in the Notes client, as shown
in Figure 12-123 on page 488.
 Chapter 12. New features in Domino 6 487

Figure 12-123 Result of viewing the XML of a design element

Exporting the XML for one or more design elements
1. Select one or more design elements in the design pane.

2. Choose Tools -> DXL Utilities -> Exporter.

3. Enter a file name and path for the XML file and click Save.

You can open the file in your favorite text editor and view or edit the XML source,
as shown in Figure 12-124 on page 489.
488 Domino Designer 6: A Developer’s Handbook

Figure 12-124 XML being edited in Notepad

Transforming XML for one or more design elements using XSL
1. Select one or more design elements in the design pane.

2. Choose Tools -> DXL Utilities -> Transformer.

3. Select the name of an XSL file to use for transforming the XML.

4. Choose a type of output. Either select screen for a screen display, or specify
an output file name.

For more information about XML and its features in Domino 6, refer to
Chapter 16, “XML” on page 743.

Note: To re-import your changes back to the design element in your
application, use the LotusScript class NotesDXLImporter. See Chapter 16,
“XML” on page 743 for more information on XML and Domino.

Note: XSL is an extensible stylesheet language (XSL) that describes how to
transform XML into HTML or into another version of XML. Designer ships with
some sample XSL files that you can select or you can browse the file system
to select another XSL file.
 Chapter 12. New features in Domino 6 489

12.21 URL enhancements
There are a couple of new URL commands in Domino 6 and some
enhancements. This section covers these updates.

12.21.1 New and enhanced URL commands
� OpenImageResource

This new URL command allows you to open any graphic resource in an
application. If you have a image called Image1, then you could access it as
follows:

http://www.lotus.com/sample.nsfe/Image1?OpenImageResource

� OpenFileResource

This new URL command allows you to open a file resource in an application.
If you have a file called File1, then you could access it as follows:

http://www.lotus.com/sample.nsfe/File1?OpenFileResource

� ReadViewEntries

This URL command is enhanced in Domino 6, and should be used to access
view data in XML form without appearance attributes such as fonts, list
separators, date formats, HTML settings, view templates and frame
redirections.

12.22 WebDav
As you are developing an application, you may want to supplement the tools
provided with Designer with tools of your own choice. For example, you may have
a favorite graphics editor you use to design images for your application, or you
may have a favorite HTML editor that you want to use to design pages. You
launch and use third-party tools from within Designer using the new feature
Tools. Now, with WebDav, you can save your changes directly back into the
database. This feature is for certain design elements only.

Web Distributed Authoring and Versioning (WebDav) is a new feature that allows
you or others on your team to edit and manage parts of a database on remote
Web servers. This enables designers with proper access to a database to open
files from a WebDav client (such as Internet Explorer or other third-party
development tools), edit these files, and save them back to the database. By
making Designer 6 WebDav compliant, the methods with which you display data
you store in a Domino database are extended.
490 Domino Designer 6: A Developer’s Handbook

For example, you may build a page using a favorite HTML editor. Using Windows
Explorer, you can drag that page into an NSF file for inclusion in a Domino
application. Similarly, an application designer collaborating on a project might
open an HTML page using Internet Explorer 5.x, edit the page, and then place
the page back into the database. WebDAV technology gives you much greater
flexibility in the development process as you can use third-party tools and
contribute to application design from remote Web servers.

The following resources can be accessed with a WebDav client:

� File resources
� Images
� Cascading Style Sheets (CSS)

Enabling WebDav
Your server, or your databases, are not enabled by default for WebDav clients.
There are a few steps to be completed to make your applications and server
WebDav enabled.

WebDAV must be enabled on the Domino server. Check with your system
administrator to make sure WebDAV is enabled in the Web Site document, which
can be found under the Internet Sites view in the Domino Directory. On the
configuration tab select Enable WebDAV in the Allowed Methods field. Note that
the HTTP server requires refreshing before the change takes effect.

As a developer, these are the steps to be completed to enable your application
for WebDav clients:

1. Set the ACL

– Provide the user with either Designer or Manager access in the database
Access Control List (ACL). The user also must have both "Create
documents" and "Delete documents" privileges enabled in the database
ACL.

– On the Advanced tab of the database ACL, set the "The maximum Internet
name & password" field to either Designer or Manager access.

2. Enable design locking for your application. Refer to 12.1.9, “Design element
locking” on page 358.

3. Disable proxies

– If the WebDAV client used to access the database is on a Domino server,
then disable the proxy for access to that particular server. For example, if
you are using either MS Windows Explorer or Internet Explorer 5 (IE5) as
a WebDAV client, do the following:
 Chapter 12. New features in Domino 6 491

• Open Microsoft IE5, go to Tools -> Internet Options -> Connections
tab.

• Click LAN settings.

• Click Advanced.

• In the Exceptions edit box, enter the name of the Domino WebDAV
server, such as: trondheim.lotus.com.

4. Disable session authentication

Check with your server administrator to make sure sessions authentication is
disabled on the Domino Web server. This setting is found in the server
document’s “Internet Protocols - Domino Web Engine” settings.

5. Start the Web server (http-task) on your Domino server. For more information,
see the Domino Administration 6 Help database.

System requirements
Domino’s implementation of WebDav in Domino 6 is only supported on Windows
NT and Windows 2000, and at the time of writing, the only WebDav-enabled
clients that work with WebDav on a Domino server are:

� Microsoft Internet Explorer 5.0x or 6.0

� Windows Explorer on Windows 98, Windows NT4, Windows 2000 or
Windows XP

� Macromedia’s Dreamweaver 4.01

� Microsoft Word 2000

Accessing your WebDav-enabled application
Since Microsoft uses Web Folders to represent their WebDav client, you start off
with creating a connection from the client to the specified Domino server. Using
Windows 2000, this can be done by creating a “Network Place”; see
Figure 12-125 on page 493.

Tip: Microsoft uses the term Web Folders to represent their WebDAV client
application. Refer to Microsoft's documentation for how to use Web Folders. At
the time of writing, the document at this URL tells you more about Web
Folders:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/off2000/htm
l/pphowAddFolderToWebServer.asp
492 Domino Designer 6: A Developer’s Handbook

Figure 12-125 Adding a new Network Place

Clicking this option gives you the new dialog box shown in Figure 12-126.

Figure 12-126 Adding the URL of the WebDav server and database

To identify the database you want to connect to, use URLs and append $files to
the end of the path to indicate to the WebDav server that this is a WebDav
request. For example, to open the database on server trondheim.lotus.com
named rune\runeredbook.nsf as a Web folder from Windows Explorer, enter the
path as follows:

http://trondheim.lotus.com/rune/runeredbook.nsf$files

If Windows can find the WebDav server and identify the database, the dialog box
shown in Figure 12-127 on page 494 completes your installation.
 Chapter 12. New features in Domino 6 493

Figure 12-127 Successfully completed adding a WebDav network place

Once you have mapped a database to a WebDAV client, you can use the
interface of the WebDAV client to browse the database and select elements
within the database to open.

Once you have established a connection to a Domino database using a WebDAV
client, you can open a resource, edit it, and save it back to the database. Or you
can add an element that you have created using a third-party editor to the
database.

Example of editing elements using WebDav
Figure 12-128 on page 495 assumes that WebDav is configured and enabled on
your Domino server and that the installation of a network place has been
accomplished.

The file explorer on your computer can be set up to show the content of your
WebDav-enabled Domino server; see Figure 12-128 on page 495.

Caution: WebDAV clients do not maintain operating system attributes, such
as a read-only state. For example, if you create an HTML page and flag it as
being a read-only file in Windows, the page will not be flagged as read-only if
you add it to a database and view it from Designer.
494 Domino Designer 6: A Developer’s Handbook

Figure 12-128 Explorer showing content of WebDav server

Figure 12-128 shows the content of a WebDav-enabled Domino server, and the
three elements that are available. These are Shared Resources of three types:

� Images (Ch4_forminfobox.gif)

� Files (install.log)

� Style Sheets (myStyleSheet.css)

These files can now be opened as any other file, within a supported WebDav
client. If you prefer to edit style sheets in Microsoft Word 2000, open the
application, edit it as preferred and save it. It will be saved directly back into the
Domino application or database, and will update the design element.

Figure 12-129 on page 496 shows these elements in Domino 6 Designer.
 Chapter 12. New features in Domino 6 495

Figure 12-129 Elements available for WebDav clients in Domino Designer 6

Important: If the design element has been “locked”, you will not be able to
save and update. You will receive an error message, depending on the
application you are using.
496 Domino Designer 6: A Developer’s Handbook

12.23 Summary
Domino 6 contains thousands of new features; covering them all would be too
much for this book, and is not its purpose. This chapter covered the most
important new features that an application developer using the Designer 6 Client
should be aware of and utilize.
 Chapter 12. New features in Domino 6 497

498 Domino Designer 6: A Developer’s Handbook

Chapter 13. Securing your Domino
application

As a database designer, you can control who has access to an application you
create at every level in the application. Domino provides a variety of security
mechanisms to enable you to do this. In this chapter, we help you understand
how these mechanisms fit together to secure your application.

13
© Copyright IBM Corp. 2002. All rights reserved. 499

13.1 Overview
The designer of an application, together with the system administrator of the
system, should define security for an application. Choices made by developers
and administrators may have impact on system performance.

Even though user authentication and creation are normally administrative tasks,
we will briefly discuss them here, as these tasks may have an impact on defining
security for different types of clients and users in your application.

You may also have to integrate with, or even develop, a user registration
application for Web users.

For a detailed description of Domino’s system security and authentication
features, refer to the redbook Lotus Notes and Domino R5.0 Security
Infrastructure Revealed, SG24-5341.

This chapter will help you decide how to:

� Set up and manage an access control list (ACL)

� Create roles to manage access for groups of users

� Restrict access to database elements

� Control document access

� Develop a plan that provides the required security for your data and
appropriate access for each user

� Utilize new Domino 6 security features
500 Domino Designer 6: A Developer’s Handbook

13.2 Controlling access to Domino data
There are a number of ways to control access to Domino data, and there are a
number of ways to approach this access as well. You can secure certain design
elements and information so that users cannot access them at all, or you can
alternatively hide certain fields and information from the user. In this instance, the
information is still accessible to the experienced user, but is hidden from the
casual user. This is more a usability issue than a security feature.

By using both the database access control list (ACL) and the encryption features
provided by Domino, you can achieve true security for your application. Creating
view access lists, hiding design elements, and using such features as computed
subforms, Hide-When features, and collapsible sections allow you to hinder
access and are good usability features, but they are not true security features.

13.2.1 Overview of Domino Security architecture
The Domino environment is made up of several components, all of which can be
secured. If access is allowed to:

� The network, then server tests are applied.

� The server, then database tests are applied.

� The database, then design factors are tested.

� Documents, encryption and access to individual documents may prevent
access to certain documents and fields.

Figure 13-1 on page 502 illustrates the places in the database structure where
access tests are applied. These are the elements you will be concerned with in
securing your application at the database level.
 Chapter 13. Securing your Domino application 501

Figure 13-1 Where access tests are applied

Design elements for controlling access
Setting up the ACL establishes who has access to the database as a whole. You
can further restrict access to database elements by using the following Domino
design elements:

� Access lists for documents, forms, and views

� User roles in the ACL

� Authors and Readers fields in a document

� Hide-when capabilities for fields, actions, sections and outlines

� Controlled access sections

Note: Underlying all this is the identification of the user, based on their ID file
and encryption keys for their HTTP login.
502 Domino Designer 6: A Developer’s Handbook

To control user access to Domino data, consider the following situations:

Table 13-1 Security requirements and solutions

Security Requirement Solution

Allow anonymous users access to your
site.

Create an Anonymous entry in the database ACL. See
“Anonymous Access to Databases” in this chapter.

Define server authentication at the
user level for Web users.

Create Web users and passwords in the Domino Directory. See
also, “Planning for Web user access” on page 551 in this
chapter.

Restrict access to database elements
to specific users.

Create access lists for documents, forms, and views, and
consider creating user roles in the ACL. Start with “Using the
Access Control List to Control Access to an Application” in this
chapter.

Control Web user access to parts of
your site.

Add a group containing the names of registered Web users to
the ACL. Choose which databases can be accessed by Web
users and what level of access to provide for each database.
Authenticate any Web client accessing a Domino server,
database, view, or document.

Restrict access to specific documents. Create Authors and Readers fields on the form, or create a
document access list.

Control display of database elements
within forms.

Use hide-when capabilities for fields, actions, and sections, or
create a controlled-access section.

Secure field information. Apply encryption techniques.

Display different information for Web
browser, Notes client and Mobile client
users.

For example: Use @ClientType to enable a computed subform,
hide elements based on @ClientType, use different forms for
different clients.

Provide an extra layer of security. Add encryption to HTTP transactions by activating Secure
Sockets Layer (SSL) at the server. (See the Domino
Administrator’s Help for more information on SSL.)
 Chapter 13. Securing your Domino application 503

13.3 Using the Access Control List to control access
Every database includes an Access Control List (ACL) that Domino uses to
determine the level of access that users and servers have to that database.
When a user opens a database, Domino classifies the user into an access level
that determines privileges. The access level for a user or server may vary in
different databases.

The access level assigned to a user determines the tasks that the user can
perform in the database. The access level assigned to a server determines what
information the server can replicate within a particular database.

Only someone with Manager access can create or modify the ACL of a database
located on a server. The Designer and Manager of the database can coordinate
to create one or more roles to refine access to particular views, forms, sections,
or fields of a database.

This section covers:

� Displaying the ACL

� User and server access levels

Displaying the ACL
The access control list of a database lists all the servers, groups, and users who
have access to the database.

To display the access control list of a database:

Choose File -> Database -> Access Control and the panel in Figure 13-2 on
page 505 will be displayed.
504 Domino Designer 6: A Developer’s Handbook

Figure 13-2 ACL to Designer 6 Help

User and server access levels
A database ACL determines the level of access that users, groups, and servers
have. Only someone with Manager access to the database can assign levels to
the users, groups, and servers listed in the ACL.

With Domino 6 there are seven main levels of access that a database
administrator can assign to a person, server, or group, as listed and explained in
Table 13-2.

Table 13-2 Access for users and servers

Level Users with this access can… Servers with this access can…

No Access Not access the database at all. Not access the replica at all.

Depositor Create documents, but cannot read, edit, or
delete documents, including those they create.

Not receive changes; not relevant for
servers.
 Chapter 13. Securing your Domino application 505

Server access levels are often the cause of databases failing to replicate as
expected. Keep the following points in mind:

� Servers not specified in the ACL have the access level that is assigned to the
-Default- group.

� Listing a server with Manager access in the ACL lets people know which
server has Manager access.

� To allow a replica to receive changes made by people with Author access,
assign the server Editor access or higher in the replica ACL.

13.3.1 Setting up and refining the ACL
When you set up the access control list, you can refine the access for users in
several ways, beyond simply specifying an access level:

� Select User Type to specify Users, Groups, and Servers

When you enter users in the ACL, you can specify whether they are users,
groups, or servers.

� Access Options

Assigning access options allows you to further refine user access.

Reader Read documents, but cannot create, edit, or
delete them.

Pull changes from the replica but not
send changes to it.

Author Create and read documents, but can only edit
their own documents if they are listed in an
Authors field on that document.

Replicate new documents.

Editor Create, read, and edit all documents unless
there are restrictions on specific documents.

Replicate all documents.

Designer Have Editor access to documents, except
where restrictions exist for specific documents,
and they can modify the database design, but
they cannot delete the database or modify the
ACL.

Replicate design changes as well as all
documents, but not ACL changes.

Manager Perform all operations on the database,
including modifying ACLs and deleting the
database.

Replicate all changes to the database
and the ACL.

Note: Any server with reader access or above can receive any kind of change
by replication. The list in Table 13-2 on page 505 refers to the ability to send
changes via replication.
506 Domino Designer 6: A Developer’s Handbook

� User Roles

Roles allow you to define responsibilities in the application and refine access
rights to database elements.

Users, groups and servers
A group is a list of users and/or servers that have something in common. Using a
group helps simplify many administration tasks. For example:

� A group of users can be given access to a database in the ACL.

� A group of servers can be designated as permitted to replicate with a
database.

� A group of users can be denied access to a resource.

There are two default server groups in the ACL:

� LocalDomainServers are servers in the local domain.

� OtherDomainServers are servers in other domains. These are usually servers
in other companies with whom users in your company need to communicate.
This type of access needs to be specified and configured by the system
administrator as well.

User types
The ability to specify user types lets you clearly indicate whether a name is that
of a person, server, or group. Table 13-3 lists descriptions of the available user
types.

Table 13-3 User types

Note: Groups you specify in the ACL must be listed in the Domino Directory.
Groups defined in users’ personal address book do not work for any kind of
access control.

User type Assign for this type of user Allows you to . . .

Person An individual user; this includes a
user on a server workstation.

Control access for an individual user.

Server A single server; this includes a
server console, and server
workstation.

Prevent someone from accessing the
database from a Notes workstation using the
server ID.

Server Group A group of servers. Identify a group of servers that will host
replicas of the database.
 Chapter 13. Securing your Domino application 507

Assigning user types for additional security
Assigning user types can provide additional security. Specifying names in the
ACL as a person, server, or server group prevents someone from later creating a
group in the Domino Directory with the same name as a person in the ACL, as
well as adding his or her name to it to access the database through the group
name.

Access options
When you add users and groups you can specify individual options that further
refine user access. For each ACL entry, you can specify slightly different options,
as listed and explained in Table 13-4.

Table 13-4 Access options

Person Group A group of individual users. Grant the same access to all users in a group
without listing each user name in the access
control list.

Mixed Group A group of servers and individual
users.

Grant the same access to a group of users
and servers.

Unspecified In the Advanced Access Control List
window, click Lookup User Types for
“Unspecified Users.” Notes looks up
an unspecified user type in the
Domino Directory.

If you leave type as Unspecified Domino will
not check whether the access is given to a
user or a server.

Important: Be aware of the “Unspecified” User Type. Setting a ACL entry to
“Unspecified” is not a recommended setting in the long term. The server
hosting the database will not check whether the “Unspecified” user is a server
or a user, and server IDs usually don’t have a password set. This means that
you in fact can use a server id from a client machine to access the database.

In the Advanced Access Control List window, click Lookup User Types for
“Unspecified Users.” Notes looks up an unspecified user type in the Domino
Directory.

Enable this option… To allow… This option is assigned by
default to…

Create documents Authors to create documents. Managers, Designers,
Editors, and Depositors

Delete documents Managers, Designers, Editors, and Authors
to delete documents. Authors can delete only
documents they created.

No one
508 Domino Designer 6: A Developer’s Handbook

*Enabling users to read and write public documents lets you give users with No
Access or Depositor access the ability to access specific forms, views, and
documents without giving them Reader or Author access in the database. Public
documents are useful for calendar applications in which one user might delegate
the ability to read or create appointments on his or her behalf to another user.

** New with Lotus Notes/Domino 6

You can specify the availability of a database element for public access at the
bottom of the Security tab in its Infobox.

Documents created with a form where public access is enabled will have the field
$PublicAccess with a value of 1 added by Domino.

Anonymous access to databases
You can handle anonymous users in one of the following ways:

� Define an anonymous entry in the ACL and specifically define access
privileges for anonymous users.

� Allow anonymous users the same access as the Default entry in the ACL.

Create personal agents Designers, Editors, Authors, or Readers to
create personal agents.

Managers

Create private
folders/views

Editors, Authors, and Readers to create
personal folders and views in a database on
a server.

Managers and Designers

Create shared
folders/views

Editors to create shared folders and views. Managers and Designers

Create LotusScript/
 Java agents

Readers, Authors, Editors, and Designers to
create LotusScript and Java agents.

Managers

Read public documents* Users to read documents created with forms,
and use views and folders, designated as
“available for public access user.”

Readers and above

Write public documents* Users to create and modify documents with
forms designated as “available for public
access user.”

Authors and above

Replicate or copy
documents **

Users to create copies or local replicas of the
database.

Everyone
 Chapter 13. Securing your Domino application 509

If you allow anonymous access to a server, you can still control access to
databases. To control database access for anonymous users, follow these steps:

1. Add a user with the name Anonymous in the Add User dialog box of the ACL.

2. Click OK.

3. In the Access drop-down box, select one of the following:

– No Access, to prevent access by anonymous users. This means that when
a Web user tries to use the database, the user will be prompted to login.

– Reader, to allow access to an information database.

– Author, to allow access to an interactive database.

Important: If the database ACL does not contain an Anonymous entry, all
anonymous users receive the Default access.

To protect the databases from unregistered users, you can establish the Default
as No Access. If Default access needs to be higher, create an Anonymous entry
in the database ACL and grant it No Access.

When granting access to unauthenticated Web clients, you will want to grant
anonymous users the least access that still allows them to use the database
effectively. For example, you might grant anonymous users:

� Reader access, for an information database

� Author access, for an interactive database

Differentiating default and anonymous access
If Anonymous is not listed in the ACL, Domino grants the user access based on
the default database access level. This may be a higher access level than you
want for anonymous users.

Access level definitions:

� Default: a user not specified in the ACL

� Anonymous: a user without a valid Notes ID for that organization

Effective access
Effective access is a new feature in Domino 6 that lets you find the correct and
effective access for a user, group or server. This is helpful when you have people

Tip: Any application that will be deployed on the Web should have an
Anonymous entry in the ACL. Assign No access to Anonymous entry unless
you want to let users access the database without authenticating them first.
510 Domino Designer 6: A Developer’s Handbook

in multiple groups in the same ACL, as well as if they are listed explicitly in the
ACL.

By using this new feature, the Notes client will check by doing a lookup in the
Domino Directory, expanding the group members of the groups in the ACL, and
comparing and building an internal list to decide what the effective access is for a
specific user.

Figure 13-3 Effective Access in ACL

Clicking Effective Access, shown in Figure 13-3, gives you a new dialog box,
where you can specify who you want to check the access for. The result of this
check for Rune Carlsen/ITSO is shown in Figure 13-4 on page 512.
 Chapter 13. Securing your Domino application 511

Figure 13-4 Result of Effective Access

Rune Carlsen/ITSO is listed in the ACL both explicit, with Manager access, and
as a member of the group Trondheim, with Reader access. Rune’s effective
access will be Manager, since there is no level of “No access” for Rune, and
because he will get the highest level of access given.

The box on the right side shows why Rune Carlsen/ITSO gains this level of
access. It is because he is explicitly added in the ACL. If Rune had been given
No Access in the ACL, and the group Trondheim had been given Reader access,
then this box would have looked as shown in Figure 13-5 on page 513.
512 Domino Designer 6: A Developer’s Handbook

Figure 13-5 Effective access with No Access

As you can see in Figure 13-5, Rune gets a level of No Access, even though the
group Trondheim has Reader access to the database. It is also indicated to the
right that the reason for the level of No Access is the entry in the ACL, which is
Rune Carlsen/ITSO.

13.3.2 Roles in the ACL
When a group you want to add to the ACL does not exist in the Domino Directory,
you may want to create a special group or role for users of the database. The use
of roles allows you to define responsibilities in the application and further define
access to database elements.

Note: As you can see in Figure 13-5, Rune is also given Full Access
Administrator rights. People listed in the Full Access Administrator field of the
server document can override any security settings of the database. Full
Access Administrator can also see all the documents in the database,
regardless of the use of readers fields on those documents.
 Chapter 13. Securing your Domino application 513

What a Role is
A role is a subset of the ACL that is controlled by the database manager. A role
can be used almost anywhere that a group or user name can be used, except for
things like e-mail addressing or to control access to design elements.

Users and groups are assigned roles to refine access to particular views, forms,
sections, or fields of a database. Instead of assigning access to a design element
to users and groups, you assign access to the role.

Some advantages of using roles are:

� They provide a flexible method of restricting document access to a specific
set of users.

� They provide group control if you do not have the authority to create groups in
the Domino Directory, or if you want to create groups just for the database.

� They make it easier for you to modify access when users leave or new users
join.

� They separate the design of your database from the names of the individuals
and groups who use it, allowing the design to be reused more easily. (For
example, if you move the application from one organization to another, you
can simply assign roles to appropriate users and groups in the ACL instead of
creating new groups in the Domino Directory and assigning users to them or
making any changes to your application design.)

To use a role in an application, assign roles to users and groups in the ACL.
Include the role in access lists, just as you do with users and groups (or actually
instead of adding specific users and groups).

Note, however, that roles cannot extend the access level given in the ACL.
Consider an exemplary database where a user has Reader access to a database
in the ACL. The database ACL also contains a role, which is called ModifyDocs,
in the ACL, which basically enables a user to modify specific documents created
with a specific form. The user will not be able to modify them, even though given
the role. To modify documents, the user would need at least need author access
to the database.

Adding roles to the ACL
To add roles to an ACL, follow these steps:

1. Open the database ACL.

2. Click Roles in the Contents pane; see Figure 13-6 on page 515.
514 Domino Designer 6: A Developer’s Handbook

Figure 13-6 Adding a role

3. Click Add. The Add Role dialog box appears (Figure 13-7).

Figure 13-7 Adding a role

4. Enter a role name (the maximum length is 15 characters) and click OK. The
role name appears in brackets in the Role list, so do not use brackets in the
name.

Assigning roles to users or groups
To assign a role to a user:

1. Open the database ACL.

2. Select the user or group name in the list of people, servers, and groups.

Note: You need Manager access to the database to add or modify a role.
 Chapter 13. Securing your Domino application 515

3. Click one or more role names in the Roles list.

4. Confirm roles by highlighting a user. A check mark appears next to the user
role or roles.

13.3.3 Enforce Consistent ACL
You can ensure that the ACL of a database remains the same on all replicas. You
do this by selecting the advanced access control list option Enforce a consistent
Access Control List across all replicas of this database. Selecting this option
ensures not only that the ACL remains consistent across server replicas, but also
that the ACL is enforced on replicas of the database made on workstations or
laptops. If you do not select this option, users have Manager access to local
replicas of server databases, which allows them to make changes to their access
levels on the server replica, although they can’t replicate such changes back to
the server.

Enforcing a consistent access control list as it applies to ACLs on workstation or
laptop replicas is not a security feature. Data in the local replica is not secure
unless you physically secure the workstation or laptop, or you encrypt the
database using the local security feature. Also, a Domino add-in program can
bypass an ACL enforced on local workstations.

Therefore, be careful when turning on this option, because if you accidentally
omit the rights to access the database, it cannot be bypassed by accessing the
database locally. You should make sure you have Manager access to the
database prior turning on this option.

People listed in the Full Access Administrator field of the server can override any
security settings of the database, including Enforce Consistent ACL. Full Access
Administrator can also see all the documents in the database, regardless of the
use of readers fields on those documents.

Note: A user who has access to a database through more than one ACL entry
(e.g. is a member in multiple groups listed in the ACL), is a member of a role if
that role is enabled for any of those ACL entries.

Tip: Selecting this option lets you tell whether a user is a member of a role or
group when they are using a local replica.
516 Domino Designer 6: A Developer’s Handbook

13.3.4 Maximum Internet Name and Password access
When working with advanced ACL options, you can also specify a maximum
access level for users that have been authenticated with the Internet name and
password setting (browser users). This setting overrides individual settings in the
ACL. No browser user can get higher access than specified for Maximum
Internet Name and Password access.

Check this setting to increase the security of your Web applications,
guaranteeing that Web browser users cannot damage your database should they
manage to guess the HTTP password of someone with access to your database.

13.3.5 Changing the ACL programmatically
You can change the ACL programmatically by using these Domino classes.

The classes in the Domino Object Model to use when working with the ACL are:

� NotesACL
� NotesACLEntry

Refer to the descriptions of the classes in the Domino Designer documentation
for detailed descriptions of the possibilities.

Example 13-1 illustrates how to obtain all entries in the ACL that are associated
with a given role.

Example 13-1 Obtain all entries in the ACL associated with a given role

'Declare Variable session as a new Notes session
Dim session As New NotesSession
'Declare db as a Notes Database
Dim db As NotesDatabase
'Declare acl as the Notes Database ACL
Dim acl As NotesACL
'Declare aclentry as ACL Entry type
Dim aclentry As NotesACLEntry
'Declare RoleName as type String
Dim RoleName As String
'Set db to the currently selected database
Set db = session.CurrentDatabase

Important: To keep the ACL the same across all server replicas of a
database, you must select this setting on a replica whose server has Manager
access to the other replicas; otherwise, replication will fail because the server
has inadequate access to replicate the ACL.
 Chapter 13. Securing your Domino application 517

'Set acl to the ACL of the current database
Set acl = db.ACL
'.....
'Get Rolename from somewhere
RoleName = "[NewsEditor]"
'.....
'.....Here You would check that role exists in ACL using
'.....'Forall RNames In acl.Roles'
'.....
'Set aclentry to the first name in the ACL
Set aclentry = acl.GetFirstEntry
'Continue looping until you run out of names in the ACL
While Not (aclentry Is Nothing)
 If (aclentry.IsRoleEnabled(RoleName) = True) Then
 'If that ACL name is in the selected role
 'Display that name to the user
 Messagebox aclentry.Name
 End If
 'Move to next name in list
 Set aclentry = acl.GetNextEntry(aclentry)
Wend

13.4 Using outline control to hide part of an Domino
application

You can control which parts of an application are visible to the user depending on
whether they are a Notes user, a Web user or on the role the user has, by using
outlines.

For each outline entry, you can use the InfoBox to specify hide from:

� Notes R4.6 or later
� Web browsers
� Depending on a formula (that, for example, checks on assigned roles)
� Mobile clients

Tip: The ability to program ACL lists is useful when automating security tasks.
For instance, you could create an agent to periodically check that every
database on your Web site has appropriate access restrictions for Anonymous
users.
518 Domino Designer 6: A Developer’s Handbook

13.5 Using directory links to control access to a Domino
application

The system administrator can control access to all databases in a given directory
by creating a directory link file. A directory link file must be named in the format
XXX.dir, where XXX is the name that will appear as a directory in the user’s Open
Database dialog.

The file is a flat text file where the first line holds the path to the actual directory
holding the databases, and the following lines hold the names of the people and
groups that are allowed to access that directory.

Example
A directory link file called projecta.dir has the following content:

d:\projects\projecta
ProjectAMembers
#Admin
CN=Rune Carlsen/O=ITSO

This means that the databases the Notes user can see in the projecta directory
are physically stored on the server in the d:\projects\projecta directory. Access to
this directory through Domino is allowed only to people in one of the groups
ProjectAMembers and #Admin and the person Rune Carlsen/ITSO.

System administrators don’t usually do this manually, as described, but instead
use the Domino Administrator Client and create this Directory Link using a GUI.
This task can be performed using the Files tab and the Tools available under
Folder.

Notes: Using this method only controls which navigational aid the user is
offered. The underlying objects must also be secured if the user should not be
allowed access to them. For example, if you have a view that only Notes users
should see, then you can hide it from Web users in the outline, but you must
also limit Read access for the view; otherwise, Web users can access the view
by specifying its exact URL.

Some types of outline entries will automatically hide themselves if the current
user does not have access to the entity they link to. Use the hide attributes if
you discover that entries are showing up inappropriately.
 Chapter 13. Securing your Domino application 519

13.6 Controlling access to views and forms
To control which views each user has access to when the user opens the
database, create a View read access list. The list can contain any users, groups,
servers, and roles that are in the ACL for the database.

Creating a View access list
To create a view read access list:

1. Open the view in Design mode.

2. Select Design -> B to open the InfoBox for the view.

3. Click the Security tab (key icon).

4. Deselect the option “All readers and above” (the default). The list in the
window displays the contents of the ACL (Figure 13-8).

Figure 13-8 View access list

5. Click one or more of the users, groups, servers, and roles that you want to
have access to the view. A check mark appears next to the names you select.

Note: The system administrator can control whether Web browsers are
allowed to access databases using directory links through the NOTES.INI
variable A value of zero (0) will allow Web browsers to access directory links,
while a value of one (1) prevents it.

The group name for administrators, #Admin, starts with the pound symbol (#).
This is to make it one of the last entries in a sorted list. When a user brings up
an address dialog from the Domino Directory, the list will not be cluttered with
system groups if they are named so they appear last in the list.
520 Domino Designer 6: A Developer’s Handbook

6. Click the blue person button to add names, roles and groups to the list from
the Address books that you have access to, and make sure that they are
added to the ACL.

To deny access to the view, deselect by clicking the name to remove the check
mark.

13.6.1 Controlling access to forms
You can control access to a form in several ways:

1. Exclude the form from the Create menu and make it available to a select set
of users with a View action button.

2. Create a form access list that specifies who can create documents with the
form.

3. Create a form for Public Access users with Read or Create rights in the ACL.

Making a form available to a list of users
This method has two parts:

� Exclude the form from the Create menu.

� Create a View action button that is available to a select set of users.

To prevent a form from appearing on the Create menu:

1. Open the form in Design mode.

2. Select Design -> Form Properties to open the InfoBox for the form.

3. On the Information tab, deselect the Include in: Menu option.

To create the action button:

1. Open a view that displays the form in Design mode.

2. Create a view action using the formula @Command([Compose];"formname").

3. Open the Action InfoBox and click the Hide tab.

Important: Remember that denying access to a view does not deny access to
the content and data in those views. A user can still create a personal view
and get access to the data by using selection formulas.

Tip: Your application will be more flexible and easier to maintain if you use
only roles to control access to design elements, not groups or individual
names.
 Chapter 13. Securing your Domino application 521

4. Enter a formula to hide the view from everyone except the users and groups
you specify. (Using roles instead of individual user or group names is
recommended for easier application maintenance.) An example of such a
formula is !@IsMember("[NewsEditor]"; @UserRoles) This formula hides the
form from everyone except users who have a NewsEditor role.

Using a form access list
Form access lists further refine the access level set in ACL and allow only those
on the list to access the form or documents created with the form.

� A form Create access list allows only those on the list to create documents
using the form.

� A form read access list allows only those on the list to read documents
created with the form.

To create a form Create access list:

1. Open the form in Design mode.

2. Select Design -> Form Properties to open the InfoBox for the form.

3. Click the Security tab (key icon).

4. In the Who can create documents with this form section, deselect All Authors
and Above (the default).

The list in the window displays the contents of the ACL.

5. Click one or more of the users, groups, servers, and roles that you want to
have the ability to create documents with the form. A check mark appears
next to the names you select.

6. Click the blue person button to add names, roles, and groups to the list from
the Address books that you have access to, and check to see that they are
added to the ACL before you make the database available to users.

To deny access to the form, deselect by clicking the name to remove the check
mark.

Note: This is not a true security measure, as users might gain access to the
form in other ways.

Note: A user without access to a restricted form may still be able to create
documents that look like they have been created with that form by using an
agent or by pasting a document from another database.
522 Domino Designer 6: A Developer’s Handbook

Creating a form for Public Access users
A public access list works with the database ACL to expand user access to
specific views, forms, and documents. Creating forms and views enabled for
public access allows you to provide users with No Access or Depositor access
with the ability to view specific documents, forms, and folders without giving them
Reader access to the entire database. Users who have this access level in the
database ACL will see only documents, folders, and views specified as available
for public access in the form/folder/view InfoBox.

Public documents are useful for calendar applications where users might
delegate the ability to read or create appointments on their behalf to another
user.

To create a form for public access and let Public Access users create documents
with the form, do the following:

1. Choose Design -> Form Properties.

2. Click the Security tab.

3. Select Available to Public Access users.

To let Public Access users read documents created with the document, do the
following:

1. Create a field and open its InfoBox.

2. In the Name field, enter $PublicAccess.

3. In the Type field, select Text and Computed when Composed.

4. In the Design pane, enter 1 as the default value for the field and click the
green button to accept the value.

5. To hide this field from users, select the Hide tab and specify hide-when
conditions in the Field InfoBox.

6. Save the form.

Tip: Use roles in the form access lists to ease the maintenance of your
application.

Note: The views the Public users will use must also be marked for Public
Access. This is done using the View InfoBox.
 Chapter 13. Securing your Domino application 523

13.6.2 Preventing printing, forwarding, and copying of documents
You can discourage users from printing, forwarding, or copying documents
created with a form. This feature helps to prevent accidental distribution of
confidential information, but it is not a true security feature since the settings can
be manipulated with the appropriate Design and Document access rights or
circumvented by using a screen capture program. To set this option, do the
following:

1. Open the form in Design mode.

2. Choose Design -> Form Properties.

3. Click the Security tab (the key icon).

4. Select Disable printing/forwarding/copying to clipboard.

5. Close and save the form.

13.7 Controlling access to documents
Individual documents can contain sensitive information. Domino security
provides several mechanisms that can restrict access to a document. You can
control both Read and Editor access to documents, as follows:

� Restrict Read access to documents:

– Create a Read access list for all documents created with a form.

– Use a Readers field.

� Restrict Editor access to documents:

– To those named in the Authors field.

– Use a Controlled Access section.

Read access
If you want to control read access at the document level, you can do it for all
documents created with a specific form or you can do it for each document. In the
following sections, we describe:

� Controlling Read access to documents based on the form used to create
them

� Controlling Read access to individual documents using a Readers field

Note: Turning this option on only affects documents created after the option
was set on. It doesn’t affect existing documents.
524 Domino Designer 6: A Developer’s Handbook

Read access list for a form
A read access list for a form refines the ACL by allowing only those named in the
list to read documents created with the form. See “Using a form access list” on
page 522 for detailed steps.

Readers field
A Readers field is a field data type that restricts readership for the document to
those users and servers that are listed in the field. There are two ways to create
a Readers field in a document:

� The Designer places a field with the Readers Data Type on a form.

� The Author or an Editor of the document opens the document properties and
sets the Read access in the Security tab. This automatically creates a
$Readers field in the document. The value of the field is the form read access
list.

� Each document that users create with the form contains the $Readers field
list of readers. If there is no read access list for the form, the documents do
not have a $Readers field.

Readers fields have the following characteristics:

� They are an excellent means of restricting replication, as only the documents
for which a user is listed in the Readers field will be replicated.

� If a document contains multiple Readers fields, all entries from all Readers
fields have read access to the document.

� They restrict reader access to individual documents only; access to each
document depends on the contents of its Readers field.

� Editable Readers fields allow authors and editors to enter names of
authorized readers.

� If all Readers fields have a null value, anyone with reader access can access
the document.

Note: The Author or an Editor of a document can change the read access list
of a document from the document InfoBox by changing the selection in the
read access list of the Security tab.
 Chapter 13. Securing your Domino application 525

Creating a Readers field
To create a Readers field:

1. Add a field to a form.

2. Select Readers as the field data type.

3. Specify readers by using one of the following methods:

– Enter user names, roles, or groups directly.

– Use a formula to compute user names, roles, or groups.

– Make the field editable so Authors and Editors can select and change
readers.

13.7.1 Editor access
Editor access to a form can be controlled by Authors fields.

Authors field
An Authors field is a Notes reserved field that lets you give users Editor access to
their documents when they have Author access to the database.

An Authors field:

� Works only in a database located on a server, or on a local replica when the
Enforce a Consistent ACL option has been selected.

� Refines the ACL, but does not change it.

To allow users with Author access to edit existing documents, including
documents they create, you must include them in the documents’ Authors field.

Users with Editor access can edit a document even if they are not in the Authors
field. (Use Readers fields to prevent users with Editor access from reading the
document, since if Editors cannot read the document, they cannot edit it.)

Attention: If you allow users to enter names of authorized readers, you
should also have a separate, hidden, computed Readers field that contains a
role for servers that should replicate the document.

We recommend that you add a role for replicating servers to a Readers field,
and then assign the relevant servers to that role in the ACL. Without that role
in a Readers field, the document will not be replicated.

This can also be solved using Authors fields, to be described in 13.6.1,
“Controlling access to forms” on page 521.
526 Domino Designer 6: A Developer’s Handbook

Users with No Access, Depositor access or Reader access cannot edit the
document even if they are listed in the Authors field.

If you add only one Authors field to a document and it contains a null value, then
only an Editor or above can edit the document.

Creating an Authors field
To create an Authors field:

1. Add a field to the form.

2. Select Authors as the field data type.

3. Specify the authors by using one of the following methods:

– Entering user names, roles, or groups.

– Using a formula to compute user names, roles, or groups. Use role name
names to ease the administration of your application. Also, consider
adding @Username function, to allow access to the current user to edit
the document again later.

– Making the field editable so that users with author or editor authority can
select and change authors themselves.

13.7.2 Combining Readers and Authors fields
Use Table 13-5 as a quick reference to determine how Readers and Authors
fields can protect your document.

Assume that Rune Carlsen and Grant McCarthy both have Author access in the
ACL and that there is no form Read access list.

Table 13-5 Combination of Readers and Authors fields

Note: You cannot, as an author, edit your own documents automatically. To
edit your own documents in a database, the form from which the document
was created needs to have an Authors field with your name.

Authors fields do not overrule the ACL. You cannot edit a document, even
though you are part of an Authors field, if you do not have Author access in the
ACL.

Readers field Authors field Who can read Who can edit

None None Everyone with ACL
Reader access

Everyone with ACL
Editor access and
above
 Chapter 13. Securing your Domino application 527

When programming with the Domino classes, you cannot use the extended class
method to assign values for Readers and Authors fields as you can when
working in the formula language. Suppose that you have a Readers field in your
document called DocumentReaders, and that you want to assign the value Rune
Carlsen/ITSO to this document. Using the formula language, you can do as
follows:

FIELD DocumentReaders := "Rune Carlsen/ITSO"

You might also expect to be able to do it in a similar way using the Domino
classes by treating the item name DocumentReaders as a property of a
NotesDocument object (assigned to the variable doc in this example):

...
doc.DocumentReaders = "Rune Carlsen/ITSO"
...

However, this method will not work because it changes the type of the
DocumentReaders field to Text type (instead of Readers type), thereby removing
the read protection from the document. When working with Readers and Authors
fields in the Domino classes, you must use the NotesItem class as follows:

...
Dim newValues(1 To 2) As String
newValues(1) = "Rune Carlsen/ITSO"
newValues(2) = "[ReplicServers]"

None Grant McCarthy Everyone with ACL
Reader access or
above and Grant
McCarthy

Grant McCarthy and
everyone with ACL
Editor access and
above

Rune Carlsen None Rune Carlsen No one

Rune Carlsen Grant McCarthy Rune Carlsen and
Grant McCarthy

Grant McCarthy

Note: Do not hardcode group or people names in Readers and Authors fields,
as this makes maintenance harder. Using roles instead allows the database
manager to assign the desired access to different groups and people by
assigning the right role to them in the ACL.

Note: This example assumes that the field exists in the document. If you are
creating a new field, use LotusScript instead, as you are not able to set the
type of the field to Readers with formulas. For more information about
front-end and back-end coding, refer to 14.2.5, “Understanding front-end
classes and back-end classes” on page 577.
528 Domino Designer 6: A Developer’s Handbook

Dim authorsItem As New NotesItem(doc, "DocumentReaders", _
newValues, READERS)
...

As you can see, the role [ReplicServers] was also added to the Readers field in
the last example. Documents protected by Readers fields should always include
read access to a role that can be assigned in the ACL to the servers that need to
replicate the database. Another way to solve this is by using a role, for example
[Admin], and assigning the role to the LocalDomainServers group.

Field Editor access security option
In a database where some users have Editor access while others only have
Author access, you can combine the use of Authors fields with the individual field
security option “Must have at least Editor access to use”. Thus, even though you
are giving users with Author rights in the ACL access to a document, by using an
Authors field you can hinder them in editing certain fields by using the Must have
at least Editor access to use field security option.

13.7.3 Controlled access sections
In addition to having the same properties as the standard access, controlled
access sections also have a separate list of allowable editors. To users with
Editor access, fields behave as normal editable fields. To users who are not listed
as Editors of the section, the fields are read-only.

In addition to limiting Editor access to the fields within a section, sections also
provide a means of attaching multiple signatures to a document (up to one
signature per section). This is a useful feature for workflow-type applications.

When programming a controlled section access formula, it must evaluate to a
name or list of names, groups, or roles. Roles are preferred for ease of
maintenance. A null return value will give general access.

Note: The preceding example assumes that the field does not already exist. If
you have an existing field and you want to change its value, do so as you
would normally, but do not use AppendItemValue; it creates a new item with a
duplicate name, and the new item doesn't have the Readers attribute.

Tip: Be sure to test readers/authors security with a user ID that should not
have access to view or edit the documents.
 Chapter 13. Securing your Domino application 529

13.7.4 Use of Hide-When formulas
You can control whether an action button, a paragraph or a cell in a table is to be
shown to a user by a hide-when formula. Select the object that you want to hide
and display its InfoBox. Click the Hide When tab and select Hide Object if
Formula is True. Then enter a formula for when the selected object should be
hidden.

See the Using @UserRoles section later in this chapter for examples of
hide-when formulas.

13.7.5 Using encryption for field security
Encryption allows you to secure information at the field level. You can encrypt the
contents of any field so that only users who have the secret encryption key can
access the message or field.

Note the following:

� Users who need to create and save documents with a form must have at least
one of the secret encryption keys you selected in the default secret keys list.

� Users who need to read the encrypted fields must also have at least one of
the secret keys used to encrypt the fields.

Note: Sections are not to be used as a security feature. An access-controlled
section does not physically protect data, because a user can modify the
section through a different form. To make a section truly secure, encrypted
fields must be used within the section.

Sections should be used when documents require multiple signatures
validating the Composer or Editor of the data.

Important: Hide-when formulas are not a true security feature on the Notes
client, as all hidden fields in a document can be seen through the document
property. It is also not secure for a Web client if Generate HTML for all fields is
selected in the Form Properties box.

Note: Web browser users have no way of using encryption, because the
secret key is held in the Notes ID. This also means that there is no way that a
Web browser user can access encrypted data.
530 Domino Designer 6: A Developer’s Handbook

How encryption works for fields
Encryption prevents unauthorized access to critical data in selected fields, and is
enabled using encryption keys. The system administrator distributes the
encryption keys to authorized users when deploying the application by mailing
the key or giving it to users in a file. When users receive an encryption key, they
must merge it with their user ID files. By having this encryption key merged in the
personal ID file, a user will be able to access the encrypted data.

Encryption methods
You need to choose an encryption method and design for it. There are three
ways you can apply encryption:

Automatically You can design a form to automatically encrypt all encryptable
fields whenever someone saves a document composed with
that form.

Manually Authors and Editors can encrypt the document by selecting an
encryption key in the document InfoBox.

Manually or automatically
You can create a field that generates a list of encryption keys
from which the Author or Editor can choose a key, or you
create a field that contains a formula that chooses the key.

Creating a secret encryption key
A document can be encrypted only if it contains at least one field designated as
encryptable.

To encrypt a document:

1. Create a secret encryption key.

2. Enable encryption for a field.

To create an encryption key:

1. Choose File -> Security -> User Security.

2. On the left side of the dialog box, click the Notes data tab and then
Documents. You see a document encryption dialog.

3. Click New Secret Key to create a new key; see Figure 13-9 on page 532.

4. Enter a name that describes the purpose of the key.

5. (Optional) Enter a comment. Include the names of the database, forms, and
fields that use the encryption key in case you need the information later.

6. If there are users using non-North American versions of Notes prior to version
5.0.4. and they are going to use the key, click Use International Encryption.
 Chapter 13. Securing your Domino application 531

7. Click OK to create the key.

Figure 13-9 Creating a new secret encryption key

Protect the key by specifying a password for the key when you export it. In this
way, only those who know the password can import the key into their user IDs.
Additionally, you can specify that a user who receives the encryption key cannot
give it to another user.

Enabling encryption for a field
You can enable encryption for a field manually or automatically. To allow Editors
and Authors to specify keys to encrypt their documents, you need to manually
enable encryption on the field.

To manually enable encryption on a field:

1. Create a field in a form.

2. Open the field InfoBox.

3. Click the Advanced tab.

4. Select Security Options: Enable Encryption for this field.

Important: Carefully back up your ID file, as there is no way to recover
encrypted data if the secret key is lost.
532 Domino Designer 6: A Developer’s Handbook

The Editor or Author must then specify which encryption key to use on the Key
tab on the InfoBox for the document.

To enable automatic field encryption:

1. In the form InfoBox, click the Key tab.

2. From the Default Encryption Keys list, select one or more encryption keys in
your ID. If you select more than one encryption key, all the encryptable fields
will be encrypted with all the keys.

13.8 Authentication on the Web
This section discusses different authentication methods for Web clients and
secure connections between a Web client and Domino server.

13.8.1 HTTP Basic Authentication
The communications protocol used by the World Wide Web is the Hypertext
Transfer Protocol (HTTP). HTTP includes a simple user ID and password- based
authentication scheme known as Basic Authentication. The implementation of
basic authentication is server-specific, but in general all servers use it for two
purposes:

� As a mechanism to identify which user is accessing the server

� To limit users to accessing specific pages (identified as Uniform Resource
Locators, or URLs).

How Basic Authentication works
Basic Authentication uses a challenge mechanism to prompt users to
authenticate themselves. The user ID and password block is constructed by
creating a string of the form: userID:password, and then encoding it, using the
base64 algorithm.

You may wonder why you are not repeatedly prompted for a password every time
you access a new restricted page. The reason is that the browser caches the
user ID, password, server name, and realm name in memory. In fact, most

Notes: Encrypted fields do not show up in a view, nor would you want them to,
since they would not be no longer private. The server, when calculates the
view index, doesn’t have the key to decrypt them.

You cannot access encrypted data from an agent, if the signer of the agent
has the key. The key is in the ID file, and is not part of a signature.
 Chapter 13. Securing your Domino application 533

browsers go one stage further than this and send a user ID and password for any
URL that is likely to need it.

Is Basic Authentication secure
There are two obvious loopholes in HTTP Basic Authentication:

� The user ID and password are included in the packet header, which means
that they can be captured by anyone with a network sniffer or trace tool at any
place in the session path.

� The user ID and password are cached in the browser, so if you leave the
machine unattended, anyone can use your ID to access restricted
information.

The user ID and password are not encrypted when they are placed in the packet
header, but instead are encoded with base64. Base64 is an algorithm that forms
part of the Multipurpose Internet Mail Extensions (MIME) protocol. It is a
mechanism that turns any bit stream into printable ASCII characters. (It is
described in RFC1521.) In fact, the objective of base64 is not to mask data at all,
but to provide a method of sending binary data through a mail gateway that can
only handle character data.

The result of this is that by capturing the Authorization: Basic header from an
HTTP request, an attacker can easily extract the user ID and password.

How serious is this exposure? Within a corporate network, it may not be a big
problem. In fact, base64 offers protection of user IDs and passwords that is
superior to many older protocols that send them as clear text.

On the Internet, however, it is a different story: there you have to assume that
someone, somewhere, is tracing everything you send. Clearly HTTP Basic
Authentication should not be used as the sole method of protection for any
critical resource.

You can make basic authentication more secure by providing an encrypted
connection for it to operate in. SSL is a valuable example of a protocol that
encapsulates HTTP data in this way.

13.8.2 Session-based authentication
Session-based name-and-password authentication includes additional
functionality that is not available with basic name-and-password authentication. A
session is the time during which a Web client is actively logged onto a server with
a cookie. To specify settings that enable and control session authentication, you
edit the Web site document or the Server document, depending on your
configuration.
534 Domino Designer 6: A Developer’s Handbook

Furthermore, you have two selections for enabling session-based authentication:

� Single server
� Multi-server

The single server option causes the server to generate a cookie that is honored
only by the server that generated it, while the multi-server option generates a
cookie that allows single sign-on with any server that shares the Web SSO
configuration document.

To use session-based authentication, Web clients must use a browser that
supports cookies. Domino uses cookies to track user sessions.

13.8.3 Secure Sockets Layer (SSL)
The SSL protocol was originally created by Netscape Inc., but now it is
implemented in World Wide Web browsers and servers from many vendors. SSL
makes use of a number of cryptographic techniques, such as public key and
symmetric key encryption, digital signatures and public key certificates. SSL has
two main objectives:

1. To ensure confidentiality, by encrypting the data that a client and server send.

2. To provide authentication of the session partners, using RSA public key
methods. Most current implementations only require the server to be
authenticated in this way, although the protocol does allow for client
authentication.

There are two parts to SSL: The handshake, in which the session partners
introduce themselves and negotiate session characteristics, and the record
protocol, in which the session data is exchanged in an encrypted form.

SSL and certifying authorities
Authentication in SSL depends on the client being able to trust the server’s public
key certificate. A certificate links the description of the owner of a key pair to the
public part of the key. The validity of a certificate is guaranteed by the fact that it
is signed by some trusted third party, the certifying authority (CA).

But how does a certifying authority become trusted? In the case of an
SSL-capable browser, the certificates of trusted authorities are kept in a key
database, sometimes called a key ring file. The list of top-level authorities, for
example VeriSign, is pre-installed when you get the browser.

This approach has the benefit of being very simple to set up; a browser can
authenticate any server that obtains a public key certificate from one of the CAs
in the list, without any configuration or communication with the CA required.
 Chapter 13. Securing your Domino application 535

SSL Client Authentication
Both client and server use digital signatures to identify themselves and those
signatures use public keys that are validated by the existence of a shared
hierarchy of certificate authorities. You may think that SSL could apply a similar
approach to allow Web browsers to authenticate themselves, simply by having
the client implement a mirror image of the server authentication process. In fact,
this is exactly what the SSL protocol specifies, by adding to the handshake a
server challenge that the client must encrypt using its private key.

Unfortunately life is not that simple. Notes can support a symmetrical
authentication scheme because you have control over the CA hierarchy and
therefore you can ensure a region of shared trust. On the Web, however, you do
not have that luxury. The monolithic certification scheme used by servers is not
flexible enough to support the large number of certificates that client
authentication would require.

13.8.4 Domino and SSL
Domino Release 4.5 added support for Domino to obtain a certificate from an
external certificate authority to provide for Domino server authentication and
session encryption (SSL V2).

The Domino 4.6 server added support for Internet client authentication (SSL V3),
using client certificates obtained from an external certificate authority. The client
certificate had to be registered in the user’s person record in the Domino Name
and Address book. Domino 4.6 also added support for Domino to be a certificate
authority to issue X.509 certificates for servers (although the Domino CA could
not yet issue client certificates).

The X509 certificate is a standard certificate format for the Internet. Certificates
verify the user’s identity and bind the public key to the user’s name. X.509
certificates are used on the Internet/intranet for authentication and encrypted
sessions (SSL), and encrypted mail and digital signatures (S/MIME).

Domino Release 5.0 added SSL 3 Client Authentication and the ability to create
X509 certificates that can be issued to Notes clients, which is the same in
Domino 6.

Previous Notes clients used their own internal certificates (similar concept to
X.509, but different format) and did not support X.509 certificates. The Notes 6
client have the ability to request a certificate from any certificate authority,
including a Domino certificate authority, and store the X.509 certificate in the
Notes ID file. To obtain an X.509 certificate from a Domino CA, Notes users will
use the Domino CA Web site (CA application) just as a browser user does today.
The X.509 certificate can be used for encryption and digital signatures between
536 Domino Designer 6: A Developer’s Handbook

Notes clients and Internet clients using S/MIME and for access to secure Web
sites using SSL.

13.8.5 When to use Internet security
There are three methods of Internet security that can be used, Basic
Authentication, SSL Server Authentication, and SSL Client Authentication with
X509 certificates. Table 13-6 describes when, typically, to use each of these
levels of security in your applications.

Table 13-6 Internet security levels and use

13.8.6 Defining Web users
You may register new Web users from scratch, or let existing Notes users have
access to the Domino Web server. To create a new Web user follow these steps:

1. Open the Domino Directory and select the Person view.

2. Select Add Person to display the Person document.

3. Enter the required information. The User Name and Internet Password fields
are the only fields used for Domino Web authentication. The other fields are
optional with the exception of the Last Name field, a required field without
which the form cannot be saved.

4. Figure 13-10 on page 538 shows a Person document being created.

Security feature When to use it

Basic Authentication In a closed network application such as a company intranet
where the level of risk from outside attack is low.

SSL Server
Authentication

In an Internet application where the risk of outside attack is
greater and you wish to protect the information and data on
your Web server to a greater extent.

SSL Client
Authentication with X509
certificates

When security is at a premium and you are exposed to
potential attacks from the Internet.
 Chapter 13. Securing your Domino application 537

Figure 13-10 A Person document being created

For more information on Internet Security, see the IBM Redbook Lotus Notes and
Domino R5.0 Security Infrastructure Revealed, SG24-5341.

13.9 Programming considerations
Domino provides several @functions that help you control application behavior
based on the user, or on the client type. We discuss the following functions:

� @UserRoles: returns a list of roles for the current user.

� @UserName: returns the user name or server name.

� @ClientType: returns a text string to differentiate Notes and Web clients.

� @UserNamesList: returns a text list containing the current user name, any
group names, and any roles.

This information is also available from LotusScript, but these are mostly used in
formula context, especially in hide formulas.

13.9.1 Using @UserRoles
Use @UserRoles in formulas to either:

� Determine what to do for a particular set of users, without needing to hard
code user names in the code.
538 Domino Designer 6: A Developer’s Handbook

� Direct one set of users to one page, and another set of users to another page
when the user clicks a button.

The @UserRoles function has no arguments:

@UserRoles

It returns a text list whose value is the role or roles of the current user.
Figure 13-11 shows an example of the values returned by @UserRoles. You can
add code to perform an action based on the returned value.

Examples
To display an action only to people in the NewsEditor role, enter the following
hide-when formula for the action:

!@IsMember("[NewsEditor]"; @UserRoles)

Or:

@IsNotMember("[NewsEditor]"; @UserRoles)

Figure 13-11 Example of the results of @UserRoles and @UserNamesList functions

Note: @UserRoles only works on a server-based database unless the
Enforce a Consistent ACL option is selected in the Advanced section of the
ACL settings.
 Chapter 13. Securing your Domino application 539

13.9.2 Using @UserName
@UserName returns the current user name. Using @UserName allows you to
make the current user name available to formulas. You can use it to:

� Restrict the Edit action in documents created with a particular form based on
whether @UserName is equal to the author of the document

� Hide portions of documents in hide-when formulas based on the user name

Example
The following view selection formula selects only documents created by the
current user to display in a private view:

SELECT @UserName=Author

@UserName has been extended to take a new parameter, index, which returns
the user name, alternate user name, or server name indicated by the parameter.

13.9.3 Using @ClientType
@ClientType returns a text string to differentiate Notes and Web clients. Use
@ClientType in formulas for which the outcome is different depending on client
type.

Example
Used in a computed subform formula, the following formula inserts the subform
WebHead if the form is to be displayed on the Web, and the subform NotesHead
if the form is to be displayed on a Notes client:

@If(@ClientType = "Web"; "WebHead"; "NotesHead")

13.9.4 Using @UserNameList
@UserNamesList returns a text list containing the current user name, any group
names and any roles. It also works on local databases when the Enforce
Consistent ACL option is selected. It returns “” for a local database where
Enforce is not in effect.

Attention: You should never use @Username as part of your view selection
formula or in a view column formula, unless the view is Private on First Use. A
workaround could be to create a categorized view based on a field where you
save the author of the document. Then you can embed this view on a form and
use @Username in the “Show single category” option.
540 Domino Designer 6: A Developer’s Handbook

@UserNamesList will allow you to combine the functionality of @UserRoles and
@UserName and, in addition, the group information for the user. Figure 13-11 on
page 539 shows an example of the values returned by @UserNamesList.

Example
@If(@IsMember("NewsEditors"; @UserNamesList); "Editor Head"; "Generic
Head")

13.9.5 Password field
You can create a Password field that displays only asterisks when a value is
entered into the field. This field allows users to enter a password in privacy.

13.9.6 Controlling if users paste documents into the database
You must also consider whether users should be allowed to paste documents
into your application database. If this is not controlled, users may be able to
compose a document in another database in a way not allowed in your
application and then paste the document into your application database.

To control the pasting of documents, use the QueryPaste event of the view. Using
this event, you can make sure the documents to be pasted meet your criteria.

13.9.7 Hiding the design of a database
The developer can protect the design of a database by hiding it. However, hiding
the design of a database will not hide the data in that database.

Consider carefully before hiding the design of a database. It may be more difficult
for the system administrator to maintain while it is deployed. For example if you
hide the design of a database, the Agents view is also hidden and the system
administrator cannot enable or disable server agents unless you have added
action buttons or similar functions.

Note: Unlike @UserRoles, this function does not append “$$WebClient” to the
list. This is because @ClientType is now available for this purpose, so
@UserRoles overloading is no longer necessary.

Important: However, you must either make sure that the password is passed
on and not saved in the document, or protect it in the document by using a
Readers field or an encrypted field to avoid other users seeing the password
through the InfoBox for the document.
 Chapter 13. Securing your Domino application 541

13.10 Other security options and considerations
In the following sections, we discuss other security options and considerations to
keep in mind.

13.10.1 Using signatures for security
Domino checks the signatures in design elements for two reasons:

� To allow execution of the application in the Notes client.

Signers allowed to execute in the Notes client are listed in the client Execution
Control List (ECL).

� To allow execution of server-based agents in the application.

Signers allowed to execute agents on the server are listed in the Security
(Agent Restrictions) section of the server document in the Domino Directory.

To make management of Execution Control Lists and the Security section of the
server document easier, it is recommended that you create a common ID for your
development organization that is used to sign all deliverables before handing
them over to the System Administrator for deployment. Then ensure that this ID
is trusted in all users ECL and is part of the Administrative ECL.

The following sections will explain:

� Execution Control Lists

� Server-based security for agents, Java and JavaScript

� Signing a database

� Signing an applet

Execution Control Lists
Execution Control Lists (ECL) have stemmed from the concern that a Notes user
does not have much control over what a Notes application is doing to their
document, database, or system.

ECLs are a means by which the Notes user can now specify what level of access
an executing formula or LotusScript program created by another person can have
to their system.

By default, no scripts or formulas, whether signed or unsigned, can execute on
your workstation without displaying a warning message.
542 Domino Designer 6: A Developer’s Handbook

ECLs are stored on a user’s workstation. To work with ECLs choose File -
Security - User Security. Click the “What others do”. The ECL of the user’s
workstation is now shown:

Figure 13-12 Execution Control List

The dialog is split into two parts. Below the “What others do” there are three
options. One for “Using Workstation”, another one for “Using Applets” and
another one for “Using JavaScript”.

Depending on your choice among these options, your choices changes for the
settings of your ECL. Common for them all, is that you add, rename, remove and
manage what the different signatures can perform on the current workstation.
Based on the developers’ signatures, you can set the level of access these
signatures should have on your workstation.

For example, suppose you are trying to create a document from a design that
has been signed by the ID Rune Carlsen/ITSO. You have specified in your ECL
list that you do not want to give this ID access to your environment variables.

When you open up the document and the program tries to perform an
@Environment command, a dialog box will appear telling you that the system is
trying to access an environment variable when it does not have the authority to
do so. If you want to allow the command to continue you can do so. You can
either allow it to run this one time only, or you have the ability to change the ECL

Note: This is a new way to access the ECL with Lotus Notes 6.
 Chapter 13. Securing your Domino application 543

permanently to give Rune Carlsen/ITSO the ability to access any of your
environment variables in the future.

Central maintenance of the ECL
When new Notes clients are installed, a default ECL is pulled from the server.
The system administrator also has the option of not allowing users to modify their
ECL. The system administrator should set an administrative ECL before installing
and configuring clients in his environment. If this is not done, there are various
ways to update the client’s ECL with a new administrative ECL.

� If the system administrator updates the default ECL, the new settings can be
distributed to existing clients by mailing them a memo that includes a button
that executes the function @RefreshECL and asks them to refresh their ECL.

� Another possibility is to add the same @RefreshECL function in the
PostOpen event of the mail template, so all users will refresh the ECL as they
open their mail file.

� The third and best way is by using the new Domino 6 Administration tools,
Security Policy Settings documents. They allow you to apply security settings
for all your users or group of users, and define how ECL maintenance should
be performed.

Refer to Lotus Domino Administrator 6 Help for more information on how to
configure and implement this.

A complete list of LotusScript and @functions that are affected by the ECL can
be found in the Notes Help database.

Agent, Java and JavaScript security on the server
The system administrator can decide the access rights for agents and code
utilizing the Domino Object Model based on the ID that the agent/code is signed
with.

In the Security part of the server document, there are entries for specifying:

� Agent Restrictions: options to specify who can:

– Run personal agents

– Run restricted LotusScript/Java agents

– Run unrestricted LotusScript/Java agents

� NOI Restrictions: options to specify who can:

Note: By default, every template that comes from Lotus is signed by Lotus
Notes Template Development, which is given full access to your system.
544 Domino Designer 6: A Developer’s Handbook

– Run restricted Java/JavaScript

– Run unrestricted Java/JavaScript

Here the system administrator can enter specific IDs; for example:

Domino Development/IBM

Access can be given to a whole organization; for example:

*/IBM

You can read more about the different levels of restrictions for agents and the
Domino object interface in the Domino Administration Help.

Signing a database
You can sign templates and databases developed by your organization so that
you can then add the associated name to the Administration ECL, as follows:

1. Launch the Domino Administrator client. One way to do this is through the
menu; choose File -> Tools -> Server Administration.

2. If the ID you want to use to sign is not the current one, switch to the correct ID.

3. Click the Files tab.

4. Select the server that stores the databases or templates that you want to sign.

5. Select the databases or templates that you want to sign by highlighting them
in the list box.

6. In the Tools pane, expand the list under Database.

7. Click Sign. A dialog is displayed.

8. Select which elements to sign. To sign every design element in a database or
template, select Sign “All Design Documents”.

9. Click Sign. A dialog box shows the number of databases processed and the
number of errors that occurred (if any). See the log file for details.

10.Click OK.

13.10.2 Access control for HTML and other files
Domino extends its access control to files in the file system. This is particularly
useful for HTML and other types of files used in Web sites. When using the
Domino native HTTP stack, you will be able to configure access control lists for
files (HTML, GIFs, etc.) in the file system. This gives you complete security and
access control for your Domino Web sites, no matter how they are built or where
their assets are stored.
 Chapter 13. Securing your Domino application 545

File system protection does not apply to CGI scripts, servlets, or agents that
access files on the system. The scripts, servlets, and agents have full access to
any files accessed. File system protection does apply, however, to files that
access other files (for example, HTML files that open image files). If a user has
access to the HTML file, but does not have access to the JPEG file that the
HTML file uses, Domino does not display the JPEG file when the user opens the
HTML file.

A File Protection document needs to be created for each directory that contains
files that you want to protect. The directory is relative to the HTML directory, set
in the Server document or, if you have virtual servers, set in the Virtual Server
document. Create the document as follows:

1. Open the Domino Directory.

2. In the Server/Servers view, highlight the Server document for the server on
which you want to protect files.

3. Choose Actions -> Create File Protection, fill out the fields described in
Table 13-7, and save the document.

Table 13-7 File protections

Tab Field Value

Basics Applies to If you have virtual servers on this machine, select
whether you want this setting to apply to all virtual
servers on this machine, or only to the virtual server
you specify.

IP Address If you select Virtual Server, enter the IP address of the
server to which the file protection applies.

Path Path This is the drive or directory that you want to restrict.
The path is relative to the HTML directory specified in
the Server document or, if you have virtual servers, the
Virtual Server document. If you want to restrict access
to specific files, enter the name of the file or use the
wildcard characters * or ? to specify a group of files.
546 Domino Designer 6: A Developer’s Handbook

4. Create a File Protection document for every path that you want to restrict on
the server.

5. At the server console, type tell http restart to refresh the file protection
settings.

6. To display the File Protection document, open the Server\Web Configurations
view. Notes displays the File Protection document as a response to the
Server document.

13.10.3 APIs for customized authentication, encryption, and signing
Domino offers APIs for:

� Authentication of Domino users by another system

This is part of the Domino Web Server API.

� Authentication of users for other applications

Customizable authentication through domino Web server API
By using an API provided with Domino (DSAPI), you can create your own
authentication schemes for Domino that can leverage external directories or
security systems. This interface provides you with greater flexibility in integrating
Domino into your existing environment and building “single-sign on” log in
capabilities. Refer to the Domino documentation and release notes for more
information.

Common Data Security Architecture (CDSA)
Domino provides a common, multivendor interface for managing various security
services, including a standards-based interface to Domino security for
application developers. This interface exposes Domino encryption, signing,
authentication, and other elements to application developers. CDSA makes the

Access
Control

Current
access control
list

The users who can access the files you specified and
the type of access they are allowed.
To add users to this list, click Set/Modify Access
Control List. Select a user name from the Public
Address Book in the Name field and select
Read-Execute, Author, or Full access. Read-Execute
lets the user open files and start programs in the
directory. Author lets the user create new files in the
directory in addition to the Read-Execute privileges.
Full access lets the user delete files in the directory in
addition to the Author privileges.
If users connect to the server using Anonymous
access, enter Anonymous in the Name field and
assign the appropriate access.
 Chapter 13. Securing your Domino application 547

process of adding security to Domino applications easier and provides for
interoperability between different applications that use security. Refer to the
Domino documentation for more information.

13.10.4 Backup and restore
Backup and restore is also part of securing your application.

You need to work with your system administrator on how to implement backup
and restore of application data during production. In larger organizations, there
will often be a standard mechanism for these important processes.

During development, it is also important that you secure your work against loss
through user or system error by making a backup of your development databases
on a regular basis.

By enabling transaction logging in each application you may be able to improve
your backup capabilities with rollback to an earlier state of the application that’s
more current than the last full backup. However, enabling transaction logging may
impact server performance and require more disks. Work with your Domino
server administrators to develop a backup plan.

13.11 Developing a plan for securing your application
Securing a Domino application is a joint effort. The database designer must work
closely with the system administrator and the database manager to successfully
design, create and deploy a secure application.

Depending on the enterprise, the database designer, the database manager, and
the system administrator may be one person or three separate people. The
system administrator often takes over the responsibility of database Manager
when the database is launched.

Table 13-8 provides a guideline for the tasks that are the normal responsibility of
each participant in an application.

Table 13-8 Planning security

Database designer Database manager System administrator

Design a security scenario.
Design the access control list (ACL).
Implement Design tools for security.
Implement Design changes.
Implement the ACL.

Implement the ACL.
Update the ACL.

Set up and authorize users and groups.
Update the Domino Directory.
Manage the server.
Propagate replication.
Manage user issues.
548 Domino Designer 6: A Developer’s Handbook

Database manager and system administrator
Securing servers and controlling access to a domain is usually the responsibility
of the server administrator. In addition, in a production environment, it will be the
system administrator who is assigned the role of database manager in the ACL
for purposes of setting up and maintaining the ACL. The database manager
should receive the following kinds of information from the designer:

� A list of users, groups, and roles in each database

� A comprehensive security plan for each database, so that it can be
maintained on the server

� All changes that are made in user and group access

� Updates to access levels and restrictions

Database designer
While the designer must design the security plan for the application, it is usually
the system administrator who has responsibility for implementing and
maintaining the security plan. Therefore, it is essential that you work out your
plan carefully, so that you can document it for the database manager. Designers
need to do the following:

� Work with the server administrator while designing the application so that
access levels and replication can be set up properly.

� Let the server administrator know whether there are any applications that
require anonymous access.

� Determine which users and groups have access to which parts of the
application.

� Decide what roles need to be added to the ACL for each database in the
application.

� Document design changes for the server administrator so that they can
replicate appropriately.

Note: All users and groups must be listed in the Domino Directory before they
can be added to the access control list in a database.

13.11.1 Key design issues
Before setting up the ACL for an application, you need to create an access
scenario. Use the following questions to create the scenario:

� Who is responsible for setting up and maintaining the ACL?
 Chapter 13. Securing your Domino application 549

The system administrator usually has overall responsibility for the ACL, and
the designer would document the security mechanisms to be used for the
administrator.

� Which users need what kind of access?

The designer needs to inform the system administrator about which access
levels to set for users, servers and groups and the sets of privileges controlled
by the roles in the ACL.

� Can you determine groups of users who need the same kind of access?

The system administrator must ensure that the groups are listed in the
Domino Directory before adding them to the ACL.

� Is there a hub server responsible for replication?

If so, you should set up replication so that changes are added to the hub
replica, then the hub adds the changes to other servers.

� Will this application be deployed on the Web?

If so, it is advisable to always have an Anonymous entry for Web users so that
you can specify exactly what Web users can do without registering.

Note: The backup and restore of application data is part of securing the
application. You also need to consider this during the design of your application.

Server access
Server documents in the Domino Directory contain restrictions that are used to
control access to a server. The database access control list refines these
restrictions, but cannot override them.

Servers in the database ACL
If there are replicas of a database, add server names and server groups to the
ACL. Server access levels affect what information can be exchanged between
the replica databases.

It is important to understand which design changes replicate and which do not,
and how the database ACL and other replication settings affect the distribution of
design changes:

� Servers need to have Editor access at minimum, so that they can replicate
data changes.

� Servers must have Designer access to replicate design changes.

Important: You cannot use server lists to control access by Web clients. The
clients are not authenticated until they try to access a database.
550 Domino Designer 6: A Developer’s Handbook

If you share your database via replication with outside agency, it may be
appropriate to grant their servers a more limited level of access so they can’t
damage your application by accident.

Planning for Web user access
Users are granted access to the Domino Web server through basic
authentication; the standard for Web security that is based on a
challenge/response protocol.

The Web user can be challenged upon initial access to the Web site if restricted,
or upon request to open any database that is restricted by the default entry in the
ACL of No Access, or an Anonymous entry in the ACL of No Access.

All Web users have access to any database on the server that has a default
access of Reader. If the database is restricted, a Web user must be listed in the
Domino Directory with an HTTP password.

You can define additional access privileges and refine the ACLs for an
authenticated user for a database, document, and so on.

Controlling Web access to Domino data
To set up Web access to your Domino data, do the following:

� Authenticate any Web client accessing a Domino server, database view, or
document.

� Define server authentication at the user level by creating Web users and
passwords.

� Choose which databases can be accessed by Web users and what level of
access to provide for each database. It is good practice to create a separate
database for the home page and use ACL restrictions to control access to all
other databases.

� Determine how to handle anonymous users.

� Optionally, add encryption to HTTP transactions by activating Secure Sockets
Layer (SSL) at the server.

Planning for anonymous users
You can control the level of access to a database for users who are not
recognized by the system. These include Web users and Notes users who do not
share a certificate in common with the server. Such users are considered
anonymous users.
 Chapter 13. Securing your Domino application 551

Anonymous access to servers
Before anonymous users can be granted access to a database from their Notes
client, they must be allowed server access. In the security section of the server
document, the Administrator defines the security settings in the following ways:

� If the Compare Notes Public Keys Against Those Stored in the Address Book
option is:

– Yes, then the Notes user must have an entry in the Domino Directory to
access the server.

– No, then the Notes user does not have to exist in the Domino Directory to
access the server.

� If the Allow Anonymous Notes Connections option is:

– Yes, then all Notes users in the world can access the server.
– No, then only Notes users who have a certificate in common with the

server can access the server.

13.11.2 Distinguishing true security features
As you probably have gathered from reading this chapter, it is important to
distinguish between true security features and features that are used to control
the User Interface of the application and may only appear to control access. Use
tTable 13-9 to distinguish between the security abilities of the different database
elements.

Table 13-9 True security features

Note: Web users can connect to the server anonymously, unless this has
been denied in the server document. In case Web browser users can access
the server anonymously, you must use database and file restrictions to lock
them out.

Is this a true security
feature

In Notes… On the Web…

ACL Yes Yes

Public Access to
documents

Yes Yes

Reader Access Lists and
Readers fields

Yes Yes
552 Domino Designer 6: A Developer’s Handbook

13.12 New security features in Domino 6
Lotus Notes/Domino 6 has a few new security features for system administrators
and application developers. In this section we cover those that are mainly of
interest to application developers of Domino 6 databases.

Extended access control list
An extended access control list (xACL) is an optional directory access-control
feature available for a directory created from the PUBNAMES.NTF template—a
Domino Directory or an Extended Directory Catalog. Use an extended ACL to

Author name fields Yes, for users that have Author
access in the ACL. However, users
with Editor access will be able to edit
the document even without being in
the Reader list.

Yes, as in Notes

Field Encryption Yes Not applicable

Signing Yes, verifies ownership. Not applicable

Controlled Access
Sections

No, users can modify the section
through a different form, but
combined with signing the section
non-authorized updates can be
discovered.

No. Given the document ID, a Web
user can get around the control in
a section (this is not for the casual
Web user, however).

View restrictions No, users may create private views
and will be able to see all document
content that isn’t protected by
Readers fields or encrypted fields.

Yes

Form restrictions No, users can always see
field content through the Document
Properties dialog box.

It depends:
No, when “Generate HTML for all
fields” is selected.
Yes, when “Generate HTML for all
fields” is deselected.

Hide-when formulas No, users can always see
field content through the Document
Properties
dialog box.

It depends:
No, when “Generate HTML for all
fields” is chosen.
Yes, when “Generate HTML for all
fields” is deselected.

Prevent Copying and
Forwarding

No No (not applicable)
 Chapter 13. Securing your Domino application 553

apply restrictions to a user's overall database access granted through the
database ACL.

Although the security provided by the Readers and Authors fields is similar to
that provided by an extended ACL, Readers and Authors field restrictions apply
to all fields associated with a specific form—whereas you can use an extended
ACL to restrict access at the field level. Since you must create Readers and
Authors fields separately on each form that requires them, they can be time
consuming to set up and to track. With this feature, however, you can apply and
manage extended ACL restrictions through one interface and for multiple forms
at once.

You manage an extended ACL using dialog boxes accessible from the database
Access Control List dialog box.

Full Access Administrator
A Full Access Administrator is a new super-user access level, which is defined on
a server level, in the server document. The people listed here will get the same
rights as administrators, as well as manager access, to all databases on the
server, regardless of the ACL on the database. A Full Access Administrator can
override any setting of a database, including Enforce Consistent ACL across all
replicas, and can access all documents in the database regardless of the use of
Readers fields.

For more information on Full Access Administrator, refer to the Lotus Domino 6
Administrator Help database.

Effective access
The “effective” access a person, server, or group has to documents in a database
is not always apparent. For example, if there are two groups with different levels
of access to documents, and someone is a member of both groups, you may
wonder what access the person actually has. Now, however, using Lotus
Notes/Domino 6, you can determine a person's effective access to the
documents, as follows:

� Select a database and choose File -> Database -> Access Control.

� Click Effective Access.

� From the Effective Access dialog box, select the name of the person, server,
or group whose effective access you want to determine and then press Enter
or click Calculate Access.

Note: If you enable an ACL for Extended Access, the ACL history is cleared.
The new history gives you far more entries than the 20-line limit. It also
includes more details about Extended Access changes.
554 Domino Designer 6: A Developer’s Handbook

� “Database Access is derived from” in the top left of the dialog box shows the
selected name's effective database access, as determined by the database
ACL.

The checked boxes on the lower left of the dialog box indicate the access
rights for the selected name.

The Groups and Roles boxes on the right of the dialog box show all the
individual and group name entries and roles that could potentially control the
selected name's access to the selected document scope. If the person,
server, or group is not in the ACL, the Groups box displays the group used to
determine the effective access.

� After you review the effective access for the selected name, click Done.

New agent security paradigm
The agent architecture and security paradigm has been changed in Domino 6, as
follows:

� Access remote servers

With Domino 6, it is possible to access remote servers with your agents. The
remote server’s server document needs to have the server you are using
listed in the Trusted servers field. By having a server name in this field, the
server assumes that the trusted server has authenticated the user.

� Save agents

It is now possible to agents to manipulate and save other agents on the
server. With this new feature, your agents are able to enable and disable other
agents on the server.

� Allowing editor-level users to run LotusScript and Java agents

A database designer is able to allow users with editor-level access to activate
agents.

� Setting rights on individual agent level

An agent signer with unrestricted rights is able to select which level of rights
does the agent operate in. By doing this, it is possible to restrict unrestricted
signer rights on agent-by-agent basis. There are three levels for this setting:

– Do not allow restricted operations

Limits the agent to running in restricted mode. The agent will not be
allowed to perform file input/output or signing but will be allowed to do
regular LotusScript or Java operations.

– Allow restricted operations

Makes the agent run in unrestricted mode. File input/output and signing
are allowed.
 Chapter 13. Securing your Domino application 555

– Allow restricted operations with full administration rights

Allows the agent to perform all operations. The agent can also perform
functions that require administrative rights.

Refer to the Lotus Domino Administrator 6 Help and Lotus Domino Designer 6
Help databases for full details on the new security features and how to use them.

13.13 Summary
In this chapter we discussed the various levels of security available to Domino
server administrators and application developers to secure information within a
Domino database. We also discussed how Domino implements standard
Internet-based security protocols and how these can be used, and reviewed the
new Domino 6 agent security features.

Note: When the agent is created, the default setting is “Do not allow
restricted operations”, which is the safest setting. If you want to perform
restricted operations in the agent, you need to set the setting to one of the
other options.
556 Domino Designer 6: A Developer’s Handbook

Chapter 14. Programming for Domino 6

In this chapter, we cover the methods available for programming in Domino. We
briefly discuss Simple Actions and the Formula language, but our primary focus
is on the LotusScript and JavaScript languages. The chapter explains how, when,
and where you can use the different programming methods.

For information on the new formulas and LotusScript functions, refer to
Chapter 12, “New features in Domino 6” on page 347.

14
© Copyright IBM Corp. 2002. All rights reserved. 557

14.1 Programming for Domino 6
The following section explains the differences between the existing integral
programming interfaces to Domino: Simple Actions, LotusScript, Java,
Javascript, XML, and the Formula language. It gives a brief overview of Simple
Actions, and it compares LotusScript, @functions, and JavaScript. The examples
are written in LotusScript and JavaScript, which are two of the programming
languages you can use to develop your applications.

14.1.1 Choosing a programming language
Domino offers four built-in languages that are appropriate for different situations:
macro, LotusScript, JavaScript, and Java.

Generally, the best language to use is the one that accomplishes the task with
the least programming. While there are differences in performance, usually these
differences are minor compared to the cost of developers' time in creating and
maintaining the application.

Macro language is best suited for:

� Operations on the current open document

� Action buttons that use basic commands (for example, FileSave)

� Agents that make simple changes to many documents in a single database

On some cases using the macro language is the only option, for example in
hide-when, view column, view selection formulas.

LotusScript is the usual best choice for any task you can't do easily with macro
language. It works both in the “front end” and “back end”, can be used to access
other Notes databases or non-Notes data sources. In short, it's a full-featured
programming language.

The disadvantages of LotusScript are:

� Unlike macro language, LotusScript does not automatically know its context
or automatically loop through multiple documents; you have to program that
logic.

� It does not work in Web and mobile applications (except as discussed in
Chapter 7, “Domino Design elements: agents” on page 247).

� Unlike macro language, its native types are not ideally suited to dealing with
Notes field data. For instance, as shown in the front-end/back-end section,
dealing with dates can be tricky. You must use special classes for some data,
and handle with arrays for multi-values.
558 Domino Designer 6: A Developer’s Handbook

JavaScript is the tool of choice for programming on Web forms, particularly for
form validations. Since it is the only one of these languages that Web browsers
know how to execute, it can be used to create Web forms with built-in
intelligence. By writing code that executes in the browser, you save a round trip of
submitting the form back to the server, the server doing calculations, and sending
the modified page back.

Of course, JavaScript is only suitable when all the necessary information is
available locally. For instance, you cannot use it to tell whether a document title
entered on the Web form is unique in the database.

Since the Notes client also can execute most JavaScript, use it to write validation
code for dual-client applications also. The same form can use the same code to
check for correct data entry in Notes and on the Web.

Java is a good alternative to LotusScript for agents that access the Notes
back-end classes. Use it if you are more comfortable with Java than with BASIC.
Also, you can add functionality to your Notes forms and pages by embedding
Java applets in them. These applets can also access Domino data, either locally
or by remote calls from a Web browser, using class libraries supplied by IBM.

14.1.2 Simple Actions
Simple Actions are predefined actions that allow you to define a sequence of
actions without requiring any programming knowledge. They are ideal for the end
user who wishes to automate some routine tasks

Use Simple Actions with shared and unshared actions, buttons, action hotspots,
picture hotspots, and agents. To access a list of Simple Actions, select Simple
Actions from the Run pull-down list and click Add Action.

The Simple Actions available are:

� Copy to database

This copies the selected document to the database you specify. You can copy
and paste selected documents within the same database or to another
database on the same server or another server. They are marked as read in
the target database.

� Copy to folder

This copies the selected document to the folder you specify. You must create
new folders before you can select them. Copying a document from one folder
to another does not remove the document from the source folder. A duplicate

Note: Web applications do not support Simple Actions.
 Chapter 14. Programming for Domino 6 559

of the document is not created; instead, the document is displayed in a new
place.

� Delete from database

This deletes the selected documents from the database. If there are replicas
of this database on other servers, documents deleted in this database are
also deleted in the replicas unless the option “Do not send deletions made in
this replica to other replicas” is selected in your database replication settings
(choose File -> Replication > Settings and click Send to see what the
settings are).

� Mark document read

This marks selected documents as read. Use this action to mark an unread
document as read without opening it or for reverting a document that was
modified back to its read status because it doesn’t actually need to be read
again(for example, if it has been modified by an agent).

� Mark document unread

This marks selected documents as unread. Use this action for flagging a
document that users want to read again. Modify field

� Modify fields by form

This replaces or appends a single field value with a new text value you
specify. This action replaces only text values for documents in Edit mode. To
replace a value with something other than text, use an @function formula or
LotusScript program. This action can modify the value of a hidden field, if you
can specify the field’s name.

� Move to folder

This moves the highlighted document in a view or folder to a different folder.
This action removes the document from the source folder and adds it to the
specified folder. The document is not deleted from the database.

Note: Do not use this option with an agent that is processing documents
with “Before New Mail Arrives.”

Note: The Append Value option does not work for rich text, number, time
fields, or for fields that are not available within documents already saved in
the database. Also, Append Value is not available if a database does not
contain any documents (for example, a database template).
560 Domino Designer 6: A Developer’s Handbook

� Remove from folder

This moves the highlighted document in a view or folder to a different folder.
This action removes the document from the source folder and adds it to the
specified folder. The document is not deleted from the database.

� Reply to sender

This sends a reply to a mail memo automatically. Replies are not sent to a
mail memo that was generated by an agent. The Body field accepts only plain
text. It does not accept styled text, graphics, or attachments.

� Run agent

This allows you to chain agents together with other agents or combine
LotusScript programs, @function formulas, and Java in one agent. The agent
to be run must already exist in the database.

The documents that additional agents process are determined by the first
agent. All subsequent agents use the same documents, regardless of their
own settings. The first agent completes its search and actions first and then
passes that information to the second agent.

For example, Agent A searches for all documents with the word “blue,”
replaces “blue” with “red,” and then runs Agent B. Agent B launches its own
search queries and actions only on the documents that Agent A processed.

� Send document

This mails the current document to the recipients designated in the
document’s SendTo field. This action works like the @MailSend function.

To predict the recipient, the document must have a SendTo field. If it does not
have a SendTo field, then Notes uses the contents of the internal $UpdatedBy
field as the recipient. If the document also contains the CopyTo or
BlindCopyTo fields, it is routed to those recipients at the same time.

If the document contains the DeliveryPriority, DeliveryReport, or
ReturnReceipt fields, they control the delivery priority, generation of a delivery
report, and generation of a return receipt. If the document does not contain
these fields, they default to normal priority, no delivery report, and no return
receipt, respectively.

� Send mail message

This mails the selected document as a whole document or as a link. The Body
field accepts only plain text. It does not accept styled text, graphics, or
attachments.

� Send newsletter summary
This searches a database for documents matching conditions you specify,
then sends a summary document with links to the individual documents.
 Chapter 14. Programming for Domino 6 561

The summary information includes items such as a one-line description of the
Date, Author, and Title columns.

The “Gather at least” option does not apply to sending a document summary
from a view or folder with an action because the action can act on only the
highlighted document, and “Gather at least” acts on multiple documents.

� @Function Formula

This adds a customized @function formula.

14.1.3 Formula language
Formulas are expressions that have program-like attribute; for example, you can
assign values to variables and use a limited control logic. The formula language
interface to Lotus Domino Designer is through calls to @functions and
@commands.

A formula consists of one or more statements that are executed in order.
Depending on the object associated with the formula and other criteria, the
formula may execute once, or it may execute multiple times on selected
documents (one execution per document). Formulas, as part of Domino 6, now
have language elements for loop iteration.

Agent formulas execute multiple times on selected documents, giving the effect
of conditional, iterative execution. Data can be processed in lists, giving the same
effect.

All @functions evaluate to a value and can be placed in a formula anywhere a
value of that type can be placed. When the formula executes, the value of the
formula takes the place of the formula. Some formulas also have side-effects,
that is, they cause actions to occur (for example, @Prompt causes a message
box to appear).

Most @functions can be used in formulas for any Notes object, but some
@functions are restricted in their applicability.

@Commands are special @functions that perform immediate actions in the user
interface. Most @commands mimic menu commands.

Note: Simple Actions only cover basic functions. To implement more complex
functions, consider using @formulas or a programming language, such as
LotusScript or JavaScript.
562 Domino Designer 6: A Developer’s Handbook

For example, the following formula, if executed from a button, puts the current
document in Edit mode and moves the insertion point down twice:

@Command([EditDocument]; "1");
@Command([EditDown]; "2")

You can use @commands in formulas for toolbar buttons, agents that do not
specify target documents, events, button hotspots, and action hotspots. However,
you cannot use @commands in a formula that does not interact with the user.
These include replication, form, selection, column, hide action, window title,
section title, section access, insert subform, hidden paragraph, default value,
input translation, input validation, computed value, and keyword field formulas,
and agents other than those that specify no target documents.

You also cannot use most @commands in Web applications, since @commands
are based on the Notes workstation user interface. About 30 @commands are
supported, but some behave differently. Refer to the Lotus Domino Designer 6
Help database for a overview of programming Domino for Web applications.

Domino 6 has many new @functions; you can find information about those
@functions in 12.5, “@functions and @commands” on page 370.

14.1.4 LotusScript
LotusScript offers the application developer the wide variety of features expected
of a modern, fully object-oriented programming language. Its interface to Domino
is through predefined object classes. Domino oversees the compilation and
loading of user scripts and automatically includes the Domino object class
definitions. This allows you to code your programs in an efficient way.

Furthermore, the hierarchy of the Domino object classes represents the flow of
control you follow in the user interface if you step down from a database icon to a
view, and further on to a document, and to a specific field within this document.
For example, if you are coding in LotusScript, you will start with the UIWorkspace
class and go down to the UIDocument class which represents the currently open
document. Once you have set this object variable, you have access to the fields
of the document.

The same principle applies if you are working with the back-end classes of
Domino, which represent the objects you might wish to work with that are not in
the user interface. You will start at the NotesSession class and go down through
the NotesDatabase class to the NotesDocument class. The front-end and
back-end classes are described in the section about Domino Object Models.
 Chapter 14. Programming for Domino 6 563

Here is a short summary of the benefits offered by LotusScript:

� Superset of BASIC

Since LotusScript is a superset of the BASIC language, it is easy to learn,
especially for Visual Basic users. You can write sophisticated scripts by using
conditions, branches, subroutines, while loops, and others.

� Cross-platform

LotusScript is a multi-platform scripting language. You can create just one
application, which can be used on any supported platform.

� Object-oriented

Domino objects are available to LotusScript. You can write scripts to access
and manipulate these objects. The scripts are event-driven, such as by an
action, clicking the object or button, opening a document, or opening a view.
You can also create your own classes, and organize your code using an
object model.

� Included in Lotus applications

Since LotusScript is supported by all the Lotus products, these products are
able to access Domino objects using a Domino-supplied LotusScript
extension. Another advantage is that you only need to learn one language to
become proficient in writing scripts in other Lotus products.

� OLE/COM support

Domino can be the perfect container for SmartSuite documents and other
OLE-enabled applications, such as Microsoft Office. You can use external
OLE automation objects by scripting them, such as 1-2-3 worksheet objects.

Domino registers itself as an OLE2 automation server, supporting both a
COM and an OLE interface. External applications can use these objects in
scripts to create and reference them. LotusScript is able to combine all the
parts and provide the means for controlling and manipulating objects.

The initial Domino 6.0 release does not include COM server capability, but
this is planned for later releases.

� Coexistence with Notes @functions

Lotus continues to support @functions. LotusScript can work with them.

� Integrated development environment

The Domino 6 Integrated Development Environment (IDE) provides an
easy-to-use interface to create, edit, and debug scripts, and to browse
variables and properties of the Domino Object Model. This allows you to write
more complex scripts in Domino.
564 Domino Designer 6: A Developer’s Handbook

� Extendable through LSXs

You may extend LotusScript by writing your own classes, which are called
LotusScript eXtensions (LSXs) in C or C++, as a Dynamic Link Library (DLL).
Creating your own LSXs allows you to expose custom functionality to
LotusScript developers in precisely the same way as Domino functionality is
exposed. You might use this, for example, if you have customer processing
logic, such as a proprietary pricing process, that you wanted to make
available to Domino developers.

� Connecting to external databases

You can connect your application to use another database (for example, DB2)
by using the LS:DO. The benefit is that you can use the existing database so
that data is stored in only one place.

� LS2J is the interface that allows data to transfer from the Java data type to the
LotusScript data type, and allows LotusScript to execute Java object
methods. LS2J allows LotusScript to create Java objects as if they are native
to the LotusScript environment.

This set of LotusScript objects is implemented by way of a LotusScript
Extension. You can use this LSX in any existing LotusScript implementation,
standalone or embedded in another application, such as Enterprise System
Builder (ESB), Lotus SmartSuite, or Lotus Notes.

LS2J enforces Java security as follows:

– Only public methods and fields are available.

– LS2J has the same access rights as a Java program which does not
contain a package statement.

14.2 The Domino Object Model
Now we take a look at the Domino Object Model (DOM). Using this model, you
have access to Domino databases and application services. The Domino Object
Model is mapped to a set of object-oriented classes available for building
applications. You can access the Domino Object Model from a broad range of
languages, including Java, LotusScript, and Visual Basic. In Domino 6, the
classes have also been exposed as XML objects to enable the creation of
distributed applications. For more highly customized applications, you can
directly access Domino services using the C++ APIs.

If you are going to write your own application, you can use the objects, methods
and properties defined in this model to work with Domino objects (for example,
databases, views, and forms). Normally, you use the properties of an object to
get information about the object; for example, you use the ReplicaID property of
 Chapter 14. Programming for Domino 6 565

the database object to query the ReplicaID of a database. On the other hand,
you use methods to perform actions on an object; for example, the
CreateDocument method of the database object creates a document in a given
database.

Conceptually, there are two types of objects:

� Front-end user interface (UI) objects

� Back-end (server) objects

14.2.1 Domino front-end user interface (UI) objects
Front-end UI objects are used to manipulate the current user interface. They are
typically used for programming events, and give you access to the Domino object
that the user is currently working on. The following front-end UI objects are
available:

� NotesUIWorkSpace represents the current Notes workspace window.

� NotesUIDatabase represents the currently used database.

� NotesUIView represents the currently used view.

� NotesUIDocument represents the document that is currently open.

� NotesUIScheduler, represents an embedded scheduler in a document.

The following objects have only events associated with them:

� Button represents a button.

� Field represents a field.

� Navigator represents a navigator.

� NotesTimer is a programmable timer you can set to execute an event routine
at specified intervals.

14.2.2 Domino back-end objects
Domino back-end objects are used for manipulating Domino data. They do not
support any event or user interface interaction.

Nevertheless, you can combine back-end objects with front-end objects in UI
scripts. For example, the NotesUIDocument object has a property called
Document which provides access to the underlying document.
566 Domino Designer 6: A Developer’s Handbook

The following back-end objects exist:

� NotesSession

This represents the Domino environment of the current script, providing
access to environment variables, Domino directories, information about the
current user, and information about the current Domino platform and release
number.

� NotesDbDirectory

This represents the Domino databases on a specific server or local machine.

� NotesDatabase

This represents a Domino database.

� NotesACL

This represents the access control list (ACL) of a database.

� NotesACLEntry

This represents a single entry in an access control list. An entry may be for a
person, a group, or a server.

� NotesAdministrationProcess

This represents the Administration Process. This class is new with Release 6.

� NotesAgent

This represents an agent.

� NotesView

This represents a view or folder of a database, and provides access to
documents within it.

� NotesViewColumn

This represents a column in a view or folder.

� NotesDocumentCollection

This represents a collection of documents from a database, selected
according to specific criteria.

� NotesDocument

This represents a document in a database.

� NotesDOMAttributeNode

This represents an attribute in a NotesDOMElementNode object. This class is
new with Release 6.
 Chapter 14. Programming for Domino 6 567

� NotesDOMCDATASectionNode

This represents a CDATA section in the XML data source. This class is new
with Release 6.

� NotesDOMCharacterDataNode

This represents character data in a DOC node. This class is new with
Release 6.

� NotesDOMCommentNode

This represents a comment in the XML. This class is new with Release 6.

� NotesDOMDocumentFragmentNode

This represents a document fragment in the XML. This class is new with
Release 6.

� NotesDOMDocumentNode

This represents the entire XML document. This class is new with Release 6.

� NotesDOMDocumentTypeNode

This represents a document type node. This class is new with Release 6.

� NotesDOMElementNode

This represents an element in the XML document. This class is new with
Release 6.

� NotesDOMEntityNode

This represents an entity in the XML document. This class is new with
Release 6.

� NotesDOMEntityReferenceNode

This represents an entity reference in the XML document. This class is new
with Release 6.

� NotesDOMNode

A base class representing a single node in a DOM tree. This class is new with
Release 6.

� NotesDOMNodeList

This represents a list of the child nodes of an element node. This class is new
with Release 6.

� NotesDOMNotationNode

This represents a notation declared in the DTD. This class is new with
Release 6.
568 Domino Designer 6: A Developer’s Handbook

� NotesDOMParser

This processes XML into a standard DOC tree stucture. This class is new with
Release 6.

� NotesDOMProcessingInstructionNode

This represents a processing instruction. This class is new with Release 6.

� NotesDOMTextNode

This represents the textual content of an element or attribute. This class is
new with Release 6.

� NotesDOMXMLDeclNodeNode

This represents the version of XML being used. This class is new with
Release 6.

� NotesDXLExporter

This represent sthe conversion of Domino data to DXL (Domino XML) data.
This class is new with Release 6.

� NotesDXLImporter

This represents the conversion of Domino data to DXL (Domino XML) data.
This class is new with Release 6.

� NotesItem

This represents a piece of data in a document. All items in a document are
accessible through LotusScript, regardless of what form is used to display the
document in the user interface.

� NotesRichTextItem

This represents an item of type rich text.

� NotesRichTextStyle

This represents the rich text field attributes.

� NotesEmbeddedObject

This represents embedded objects, linked objects, and file attachments.

� NotesDateTime

This represents a date and time.It provides a means of translating between
the LotusScript date-time format and the Notes format.

� NotesDateRange

This contains a range of NotesDateTime. An object of type NotesDateTime
represents a given date and time.
 Chapter 14. Programming for Domino 6 569

� NotesLog

This enables you to record actions and errors that take place during a scripts
execution. You can record actions and errors in a Notes database, a mail
memo, or a file (for scripts that run locally).

� NotesMIMEEntity

This represents a NotesItem of type MIME. This class is new with Release 6.

� NotesMIMEHeader

This represents a MIME header. This class is new with Release 6.

� NotesNewsLetter

This represents a document that contains information from, or doclinks to,
several other documents. All of the NotesItem properties and methods can
also be used on a NotesRichTextItem.

� NotesNoteCollection

This represents a summary document thet contains information from, or links
to, several other documents. This class is new with Release 6.

� NotesForm

This represents a form in a Notes database.

� NotesInternational

This object contains properties that provide information about the
international settings (for example, date format) of the environment in which
Domino is running.

� NotesName

The properties of this object contain information about a Domino user name.

� NotesTimer

Objects represent a timer in Domino.

� NotesRegistration

This represents the creation or administration of an ID file.

� NotesOutline

This represents the Notes Outline attributes.

� NotesOutlineEntry

This represents an entry in a Notes Outline.

� NotesReplication

This represents the replication settings of a database.
570 Domino Designer 6: A Developer’s Handbook

� NotesReplicationEntry

This represents the replication setting for a pair of servers in a database. This
class is new with Release 6.

� NotesRichTextDocLink

This represents a doclink in a rich text item. This class is new with Release 6.

� NotesRichTextNavigator

This represents a means of navigator in a rich text item. This class is new with
Release 6.

� NotesRichTextParagraphStyle

This represents RichText paragraph attributes.

� NotesRichTextRange

This represents elements in a rich text item. This class is new with Release 6.

� NotesRichTextSection

This represents a collabsible section in a rich text item. This class is new with
Release 6.

� NotesRichTextTab

This represents RichText tab attributes.

� NotesRichTextTable

This represents a table in a rich text itemsection in a rich text item. This class
is new with Release 6.

� NotesSAXAttributeList

This represents the attributes of an element. This class is new with Release 6.

� NotesSAXExeption

This represents information about errors that occur during SAX parsing. This
class is new with Release 6.

� NotesSAXParser

This represents XML as a series of events using a SAX parser. This class is
new with Release 6.

� NotesViewEntry

This represents a view entry. A view entry represents a row in a view.

� NotesViewEntryCollection

This represents a collection of view entries, selected according to specific
criteria.
 Chapter 14. Programming for Domino 6 571

� NotesViewNavigator

This represents a view navigator. A view navigator provides access to all, or a
subset of, the entries in a view.

� NotesColorObject

This represents a color.

� NotesXMLProcessor

This contains the properties and methods common to all DXL processes. This
class is new with Release 6.

� NotesXSLTransformer

This represents the transformation of DXL (Domino XML) through XSLT. This
class is new with Release 6.

14.2.3 Object hierarchy
There is a hierarchical relationship for Domino objects. Higher hierarchical
objects contain the lower ones. Figure 14-1 on page 573 shows an example of
the hierarchical relationship between a few of the Domino objects.
572 Domino Designer 6: A Developer’s Handbook

Figure 14-1 Object hierarchy

Each object has defined members, properties and methods. Using these
members, you can access other objects. The relationship of containment and
access means that the higher object has the property or the method to access
the lower one.

For example, you can see all the views when you open the database. This means
that the opened database (object) in the workspace includes the views (object).
Furthermore, you can see the documents when you select one of the views. This
means that your selected view (object) contains the documents (object).

This hierarchy is important when using Domino objects. NotesSession is the top
level object in the Domino Object Model. You can work your way to any Domino
object if you start from NotesSession.

14.2.4 Using Domino objects from LotusScript
In this section, we look at examples of code that use objects in LotusScript.
 Chapter 14. Programming for Domino 6 573

Example 1: Getting the text of the subject field
Dim session As New NotesSession
Dim db As NotesDatabase
Dim view As NotesView
Dim doc As NotesDocument
Dim item As NotesItem
Set db = session.CurrentDatabase
Set view = db.GetView("Main View")
Set doc = view.GetFirstDocument
Set item = doc.GetFirstItem("Subject")
Messagebox "Subject of first document in Main View is: " + item.Text ‘ or
item.Values(0)

First, we declare the variable session as types of NotesSession object, and New
is used to create an instance of that object.

We declare the variables:

� db as type of NotesDatabase
� view as type of NotesView
� doc as type of NotesDocument
� item as type of NotesItem

To get the text of the subject field, we need to follow the hierarchical path from the
top to the lower one. In this example, we go from NotesSession object to
NotesItem object:

NotesSession - NotesDatabase - NotesView - NotesDocument - NotesItem

We initialize the variable db with the property CurrentDatabase of the higher level
object. We set the object variable view using the GetView method, giving it the
name of a view.

The next statements are the same as before: we use the methods
GetFirstDocument method to give us the first document from the view, and
GetFirstItem to get the subject field from the document. Then we get a handle on
the textvalue of the item by printing this to the client using the “Print”-method.

The NotesItem object contains other information about the field besides the
value, such as the last modified timestamp of the field. If all you want is the value,
you can get it using NotesDocument.GetItemValue method, so you don't need to
declare a NotesItem variable.

You can also use the syntax doc.fieldname, which is equivalent to
doc.GetItemValue("fieldname"). However, this is slightly less efficient.
574 Domino Designer 6: A Developer’s Handbook

Notice the difference between the Text property of an item, and its Values, which
are always returned as an array. Even if the field contains just a single value, its
value is returned as an array with one element.

If the field contains numeric or date values, the array elements will be Double or
Date/time variants, respectively. A common programming error is to treat the field
value as a scalar, for example:

Print "Subject is: " + doc.Subject ' "type mismatch" error on this line.

This results in an error because of the attempt to concatenate a string with an
array.

Example 2: Disabling a role for a person
Dim session As New NotesSession
Dim db As NotesDatabase
Dim acl As NotesACL
Dim entry As NotesACLEntry
Set db = session.CurrentDatabase
Set acl = db.ACL
Set entry = acl.GetEntry("Kari Koski")
If Not (entry Is Nothing) Then
 ' The ACL entry does exist.
 Call entry.DisableRole("Auditor")
 Call acl.Save
End If

To access the personal access control list (ACL) data for a database, you need to
follow the hierarchical path from the top class to the lower one. This example
steps from the NotesSession object to the NotesACLEntry object:

NotesSession - NotesDatabase - NotesACL - NotesACLEntry

The object that you would like to manipulate has methods or properties to handle
its own data. The first seven lines of this example are similar to Example 1. The
tenth line uses the DisableRole method of the NotesACLEntry object to disable
the role [Auditor] for “Kari Koski”.

Example 3: Getting the subject field of all documents
Dim db As New NotesDatabase("Server","db.nsf")
Dim dc As NotesDocumentCollection
Dim doc As NotesDocument
Dim item As NotesItem
Dim subject As String
Set dc = db.AllDocuments
Set doc = dc.GetFirstDocument()

While Not(doc Is Nothing)
 Chapter 14. Programming for Domino 6 575

Set item = doc.GetFirstItem("Subject")
subject = item.text
Set doc = dc.GetNextDocument(doc)

Wend

The earlier two examples start at the NotesSession object, but to access an
existing database when you know its server and file name, you can get the
database object directly as shown in the first line.

This illustrates a unique feature of writing Notes applications in LotusScript, as
opposed to the formula language: you can access any database from within a
script, and perform any function upon it.

The following sequence is the same as in the earlier examples. The
NotesDatabase object contains the NotesDocumentCollection object, which
contains NotesDocument:

NotesDatabase - NotesDocumentCollection - NotesDocument - NotesItem

We use the AllDocuments property of the NotesDatabase object to get all the
documents in the database. Next, we use the GetFirstDocument method of the
NotesDocumentCollection object to get the first document in a collection.

We then use the GetNextDocument method of the NotesDocumentCollection
object to get the document immediately following the earlier document in a
collection. If a document does not exist in a collection, the GetNextDocument
method returns Nothing.

Example 4: Obtaining a value from a open document
Dim ws As New notesUIWorkspace ' the user's current screen
Dim uidoc As NotesUIDocument
Dim doc As NotesDocument
Dim subj As Variant
Set uidoc = ws.CurrentDocument ' the form displayed on the current screen.
Set doc = uidoc.Document ' the document whose values are displayed in the
form.
subj = doc.GetItemValue("Subject")
' subj now contains a one-element array.
Print "Subject: " + subj(0)

Tip: GetNthDocument can also be used to loop through the douments in a
collection, but in most cases GetFirstDocument and GetNextDocument are
much faster.
576 Domino Designer 6: A Developer’s Handbook

This example obtains a value in the current open document by going to the
back-end document and reading information from it. First it gets a handle on the
current displayed document on the screen; this is done using the
“currentdocument” property of the NotesUIWorkspace.

Then it gets a handle on the back-end version of this document by using the
“Document” property of the NotesUIDocument. For more information and
understanding of the frond-end and back-end classes, refer to 14.2.5,
“Understanding front-end classes and back-end classes” on page 577.

14.2.5 Understanding front-end classes and back-end classes
Front-end classes are a hierarchy that begins with the NotesUIWorkspace class,
and that includes NotesUIDatabase, NotesUIView, NotesUIDocument and
NotesUIScheduler. The UI in the names of these classes indicate their function;
they deal with the user interface (whatever the user is seeing on their screen at
that moment). These classes can only be used when there is a UI context
available; for instance, you cannot use them in a server agent because with a
server agent, there is no user and no screen display.

Back-end classes deal with information that is stored in the Notes database,
which the user may or may not be viewing at the time. This hierarchy begins with
NotesSession; it is pictured, in part, in Figure 14-1 on page 573. These classes
may be used in server agents because they do not assume a user and a screen.

There is an interface between front and back end. The front-end classes contain
properties that allow you access to the back-end object corresponding to the
user's current display.

For instance, if the user is viewing a document, you can use
NotesUIWorkspace.CurrentDocument to obtain the NotesUIDocument object
that represents the current window. Then, use NotesUIDocument.Document to
get the NotesDocument object that represents the document that the current
window displays.

The Domino back-end data model
To understand how to work with documents in the back end, you must know how
Domino stores information in those documents.

A document, in Domino, is a container of “items”. The document also has header
information that is not stored in items, such as its creation date.

Each item has a name, value, and other properties. Notes reserves some item
names for its own use, and you may not (or should not) modify these. These
 Chapter 14. Programming for Domino 6 577

items have names that begin with “$” (for example, $UpdatedBy, which contains
a list of names of users who have modified the record).

Apart from this system information, the association of items to documents is
entirely arbitrary. When working with a document in the back end, you may create
any number of items with any names and datatypes you like, subject only to
some limits on how much “summary” information may be stored in one
document.

In particular, it is not necessary that the item names match the names of fields on
a form. When working with a NotesDocument object, the design of the form is
totally irrelevant to what you can and cannot do. There need not even be a form;
it is quite possible to create a document entirely on the back end, assign values
to some items, and save it, without specifying what form would be used to edit
the document.

If they do happen to match a field on a form, the datatype of an item need not
match the datatype the field has on any form. For instance, you might have a
numeric field named “Total” on a form, but this does not prevent you from storing
a string in a NotesDocument item named “Total” if you choose—even if the
document was originally created using that same form.

That's in theory—in practice, of course, there is generally quite a strong
connection between fields on a form and items stored in a document. While you
could write a program to change the Total field in all your documents from a
number to a text string, it would generally be undesirable to do so.

Actually, the main reason you need to know about this is to avoid creating such
inconsistencies accidentally! All too often, developers write back-end code that
implicitly assumes that the form will reformat the values they supply. In fact, this
will not happen unless the user is editing the document at the time.

Following are examples of this kind of error:

� doc.PublishedDate = publish$ ' - the string is stored as a string, not converted
to a date.

� doc.Readers = "[Admin]" ' - creates a plain text field, not a Readers field.
� doc.SendTo = "Ralph Jones, Sally Pigeon" ' - the comma-delimited string is

not converted to a multi-value field.
� doc.Authors = "Blind Lemon Jefferson/Blues Zone" ' - creates a plain text

field, not an Authors field; also, the name is not stored in canonical form.

Example 14-1 on page 579 shows the corrected code.
578 Domino Designer 6: A Developer’s Handbook

Example 14-1 Manipulating fields in a document with LotusScript

Dim pubDate As NotesDateTime(publish$)
Set doc.PublishedDate = pubDate

doc.Readers = "[Admin]"
doc.GetFirstItem("Readers").IsReaders = True

Dim recipients(0 to 1)
recipients(0) = "Ralph Jones"
recipients(1) = "Sally Pigeon"
doc.SendTo = recipients
Dim author = New NotesName("Blind Lemon Jefferson/Blues Zone")

doc.Authors = author.Canonical
doc.GetFirstItem("Authors").IsAuthors = True
doc.Form = "PublicationRecord" ' when you create a document in the back end,
you must add the Form item if you want it associated with a form (and you
usually will!)

Notice that the corrected code is a lot longer than the original erroneous code;
that's because it is doing more work. The business of conversion to the correct
type, reformatting names, splitting delimited strings into multi-values, and
flagging items as Readers or Authors fields, is taken care of automatically when
the user edits a document using a form; the Notes client uses definitions of the
fields on the form to decide what values should be manipulated in what way to
get the document to match the form.

The lazy way to get Notes to do all this work for you is to call the
NotesDocument.ComputeWithForm method. This would have fixed all the
problems in the preceding code sample. It also, optionally, evaluates field
validation formulas, so that you can make sure the document contains only legal
values.

The disadvantage is that ComputeWithForm has poor performance compared to
writing it yourself. In addition, it does not execute any JavaScript or LotusScript
code in the form events, so the results may not be the same as editing the
document.

Working with documents in the front eEnd
So what happens, exactly, when you open a document in the Notes client? First,
Notes decides what form to use to view the document with. There are a few
factors affecting this (such as whether the view has a form formula), but in
general, the form used will be the one whose name or alias appears in the Form
 Chapter 14. Programming for Domino 6 579

item of the document. In the preceding example, the PublicationRecord form
would be used.

Think of the form as a “window” on the document. The form contains fields; if the
document contains an item with the same name as the field, its value will be
displayed there. If the document contains items whose names do not match any
on the form, those values are not displayed—but they are still part of the
document, so you can use them in the LotusScript back-end objects and in
macro code.

The same document might later be viewed with a different form. For an example
of this, open a calendar entry in your Notes calendar (choose one that has a
description at the end) and select the menu View/Switch Form.... and then
select Memo in the dialog. You'll see the same document, but viewed “through
the window” of a different form.

The Memo form and the Calendar Entry form both have a Subject and Body field,
so you can still see the meeting description that is stored there. But the memo
form does not have a field to display the meeting type, location, or start time, so
that information is not visible, although it is still stored in the document.

When you recalculate or save a document you are editing, Notes uses the fields
and formulas of the form that is open on screen to update the values of the items
in the document. Every item whose name matches the name of a field on the
form is set to the appropriate datatype, turned into a list if the field is designated
as multivalued, and changed to canonical form if the field is of Names, Readers
or Authors type. Fields that do not appear on the form are not affected by this,
unless there are formulas or event code on the form that changes their values.

The NotesUIDocument properties and methods concern themselves with what
users see on the screen. The NotesDocument item values are what will actually
be stored in the database when the document is saved. The difference can be
most easily shown by keyword fields. Refer to 4.2.3, “Field types” on page 102 for
a description of keyword fields; it shows how to specify a different value to be
displayed on the screen versus stored in the document.

For example, suppose this is the list of keyword choices for the field
RushDelivery:

� Yes|1
� No|0

The user will see the choices Yes and No when editing the document, but the
value 1 or 0 will actually be stored in the document.
580 Domino Designer 6: A Developer’s Handbook

Therefore, if Yes is selected currently, the following piece of code will output the
text : Yes ---> 1. This represents two different ways of looking at the same field.

Dim ws As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Dim doc As NotesDocument
Set uidoc = ws.CurrentDocument
Set doc = uidoc.Document
Print uidoc.FieldGetText("RushDelivery") + " ---> " + doc.RushDelivery(0)

All field values that you can obtain through the NotesUIDocument are text,
regardless of the type of the field. These are the actual characters that are in the
field at the moment.

If you refer to the field through the NotesDocument item, you will get a value of
the type specified for that field—number, date, or whatever (or to be precise, an
array of such values), assuming it was possible to convert the value to the correct
type.

Refer to the Notes help for NotesUIDocument.AutoReload property for a
discussion of when changes to the back-end document appear on the screen.
Also note that rich text fields are handled in a special way, as described in detail
in Chapter 15, “Rich text programming” on page 697.

14.2.6 Using Domino objects from Java
You can also access the Domino back-end objects from Java. This allows you to
write parts of your application in Java. The Java program runs on the machine
where Domino is installed. For example, Java agents can be written that will
manipulate Domino objects

Java agent
This example shows an agent that runs on newly created and modified
documents since the agent was last run. The program works on the unprocessed
documents, prints the form name of each document, and marks each document
as processed. The first time the agent runs, the agent returns all of the

Notes:

The Java classes are not a port of the LotusScript classes to Java. Actually
the same C++ code is executed, only the syntax of the interface is different.

LotusScript and Java are about equal in terms of performance. Use the
one that best suits your application, or you’re that more comfortable with.
 Chapter 14. Programming for Domino 6 581

documents in the database. Thereafter, the agent returns those documents that
updateProcessedDoc has not touched.

� Create an agent:

– Name the agent.

– Select When should this agent run = Manually from Actions Menu.

– Which documents should it act on = All documents in database.

– Select Java as your source code and write the agent code.

import lotus.domino.*;
import java.util.*;

public class myagent extends AgentBase
{
 public void NotesMain()
 {
 try
 {
 Session s = getSession();
 AgentContext ac = s.getAgentContext();
 DocumentCollection dc = ac.getUnprocessedDocuments();
 Document doc;
 int size = dc.getCount();
 System.out.println("Count = " + size);
 doc = dc.getFirstDocument();
 while (doc != null)
 {
 System.out.println
 (" *** " + doc.getItemValue("form"));
 ac.updateProcessedDoc(doc);
 doc = dc.getNextDocument(doc);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Save it.

14.2.7 Using LS to access Java objects and methods
In Domino 6, you can use LotusScript to access Java object and methods. For
more information on this, refer to 12.6.4, “LotusScript to Java (LS2J)” on
page 395.
582 Domino Designer 6: A Developer’s Handbook

14.3 Programming with LotusScript
When you program in Domino, you write your LotusScript code to affect Domino
objects. Your code is executed by the occurrence of an event to the objects (such
as clicking a button, opening a document, closing a document, or entering data in
a field). Using the Objects view, you can easily see the events that are available
for an object.

For example, you can write a very simple script for an object such as a button, as
follows:

Sub Click(Source As Button)
MessageBox("I'm learning LotusScript!")

End Sub

This script just shows a message box when you click the button.

14.3.1 The Event model
Each programmable object in Domino has a list of associated events that it
responds to; for example, a button responds to an event called “Click” that is
executed when the user clicks the button.

Another example of this is the “postopen” event of the form, which is triggered
when a user displays a document on their screen. The postopen event occurs
once all data has been loaded from the back-end database into the form, and just
before it is displayed to the user.

In the following section, we show how to use the postopen event.

Example - using the OnLoad event
This example adds an action to the Form (document) object and uses the
OnLoad event.

1. After you have created a blank database, open it in Design mode.

2. Select the form design view and click New Form. The new form is displayed.

3. At the cursor blinking position, enter: CREATOR.

4. Choose Create -> Field. The InfoBox used to set the properties of a field
appears; see Figure 14-2 on page 584.

Note: Try the following example by creating a temporary database based
on the Blank template, so as not to corrupt any existing databases.
 Chapter 14. Programming for Domino 6 583

Figure 14-2 Creator field in Domino Designer

5. Enter: Creator in the Name: field of the InfoBox and close the box.

6. Go to the Untitled (Form) in the Objects view.

7. Choose the OnLoadevent.

8. Edit the LotusScript so that it looks exactly like the following:

Sub Onload(Source As Notesuidocument)
Dim session As New NotesSession
If source.EditMode Then
 Call source.FieldSetText("Creator", session.CommonUserName)
End If

End Sub

9. Choose File -> Save.

10.Enter: LotusScript1 as the form name and click OK.

Note: In Domino R5, you could use PostOpen event, but PostOpen event
use is discouraged in Domino 6. Use onLoad- Client instead.
584 Domino Designer 6: A Developer’s Handbook

Running the example
There are two options to test the form; you can do either.

1. Click Design -> Preview in Notes (or click the icon Notes Preview).

Domino opens the current form and shows its contents.

Alternatively, you can:

2. Use the Notes client to open the database to which you added the script.

� Choose Create -> LotusScript1.

The new form LotusScript1 appears and your name is set in the creator field.

This script runs after the user opens the document. If the document is new, the
Creator field is set to the name of the creator; see Figure 14-3. You can select
any events mentioned earlier and write a script. For example, you can select the
QuerySave event to check whether or not every field has a value entered in it
before the document is saved.

Figure 14-3 Creator field in Domino 6 Client

14.3.2 Event type and sequence
In the following sections, we describe the events for some of the objects in
Domino.

Note: This only lets you run the form you are working on. If you want to test
the whole application, it is better to open the current database.
 Chapter 14. Programming for Domino 6 585

Field object
The Field object has the following events where you can write LotusScript. Other
events are available for JavaScript or Formula:

� (Options) (provided area for LotusScript options)
� (Declarations) (declare all global variables and constants)

� Initialize (when it is being loaded)
� Entering (when the cursor is moved to the field in edit mode)
� Exiting (when the cursor is moved out of the field edit mode)
� erminate (when it is being closed)

Example - add action to Field object and use Exiting
We will now add an action to a Field object and use the Exiting event.

1. Select the database and then the Form design view. Click New Form in the
programming view. The form design window is opened and the cursor is
blinking at the top left-hand side.

2. Enter Last name: at the cursor blinking position.

3. Choose Create -> Field. The InfoBox appears.

4. Enter LastName in the Name: field of the InfoBox.

5. Create one more field. You don’t need to change the name in the InfoBox —
you can leave it as Untitled. When we go to this field later, we will exit from the
LastName field, which will cause the exiting event to occur. In this example,
the field name is FirstName.

6. Choose Last name(Field) from the Objects view and choose Exiting event.

7. Edit the LotusScript so that it looks exactly like this:

Sub Exiting(Source As Field)
Dim ws As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Set uidoc = ws.CurrentDocument
LastName = uidoc.FieldGetText("LastName")
If LastName = "" Then

While LastName = ""
LastName = Inputbox("Enter Last name")

Note: In the preceding two events, you cannot write executable LotusScript
statements.

Note: Try the following example by creating a temporary database so you do
not corrupt any existing databases.
586 Domino Designer 6: A Developer’s Handbook

Wend
Call uidoc.FieldSetText("LastName", LastName)

End If
End Sub

Figure 14-4 Example LotusSript2

8. Choose File -> Save. Enter LotusScript2 as the form name and click OK.

Running the example
1. Select the database to which you added the script.

2. Choose Create - LotusScript2. The new form LotusScript2 appears.

3. Select the second field without entering any data. A message box appears
which asks you to enter Last name.

This script runs when the user exits from the Last name field. The script makes
sure that the user enters a last name.
 Chapter 14. Programming for Domino 6 587

Button object
The Button object has the following events:

� (Options) (provided area for LotusScript options)
� (Declarations) (declare all global variables)

� Initialize (when the form is being loaded)
� Click (when it is selected)
� ObjectExecute (see the following note)

� Terminate (when the form is being closed)

Example - add action to Button object and use Click
We will now add an action to a Button object and use the Click event.

1. Select the database and then the Form design view and click New Form.
The form design window is opened and the cursor is blinking at the top
left-hand side.

2. Enter CHARACTER: at the cursor blinking position.

3. Choose Create -> Field. The InfoBox appears.

4. Enter Character in the Name field in InfoBox.

5. Set the cursor position just to the right side of the Character field.

6. Choose Create -> Hotspot -> Button. A button is placed on the form, and the
InfoBox for the button appears.

7. Inside the InfoBox, enter Clear in the Button label.

Note: In the preceding two events, you cannot write executable LotusScript
statements.

Note: The ObjectExecute event is primarily used in external applications,
and should not be used in the Notes environment.

Note: Try the following example by creating a temporary database so as not to
corrupt any existing databases.
588 Domino Designer 6: A Developer’s Handbook

Figure 14-5 LotusScript 3

8. Choose Clear (Button) from the Objects view.

9. Edit the sub so that it looks exactly like this:

Sub Click(Source As Button)
 Dim ws As New NotesUIWorkspace
 Dim uidoc As NotesUIDocument
 Set uidoc = ws.CurrentDocument
 If (uidoc.FieldGetText("Character") <> "") Then
 Call uidoc.FieldClear("Character")
 End If
End Sub

10.Choose File -> Save. You are asked to specify a form name for the new form.

11.Enter LotusScript3 as the form name and click OK.
 Chapter 14. Programming for Domino 6 589

Running the example
1. Select Design - Preview in Notes. The new form LotusScript3 appears.

2. Enter some characters in the field, then click Clear. The characters you
entered are cleared.

14.3.3 Action object
The Action object has the following events:

� (Options) (provided area for LotusScript options)

� (Declarations) (declare all global variables)

� Initialize (when it is being loaded)

� Click (when it is selected)

� ObjectExecute (see the following note)

� Terminate (when it is being closed)

14.3.4 Using LotusScript in Web applications
Domino also allows you to run your LotusScript code in Web applications, but
there are a few limitations. Usually you use LotusScript to develop agents which
you will call from the WebQueryOpen and WebQueryClose events.

Note: LotusScript agents can only run on the Domino server, not within the Web
browser.

14.3.5 How scripts and formulas are executed
If your application contains a combination of LotusScript and the formula
language, it is useful to know the order in which the events and formulas in a form
are executed.

Note: In the preceding two events, you cannot write executable LotusScript
statements.

Note: The ObjectExecute event is primarily used in external applications,
and should not be used in the Notes environment.
590 Domino Designer 6: A Developer’s Handbook

The following example lists the order in which LotusScript events and Domino
formulas in a single forms design are executed, during a number of activities. The
list was generated by embedding message box commands or @prompt formulas
into all the possible events and formulas on a test form containing different field
types.

The test form does not include all the possible field types or evaluation
combinations. By studying the results in this example, however, you will be able
to understand the order of execution in the forms of your own application.

The test form contains five fields from top to bottom, in the following order:

� Subject - Editable/Text Field - (with Default Value, Input Translation and Input
Validation Formulas).

� From - Computed When Composed/ Authors Name Field - (with Value
Formula).

� Counter - Computed/Number Field - (with Value Formula).

� DisplayNum - Computed For Display/Number Field - (with Value Formula).

� Body - Editable/RTF Field - (with Default Value Formula).

In Table 14-1 through Table 14-9 on page 594, we list different activities (such as
composing a document, saving a document and so on), and the order in which
LotusScript events and Domino formulas are executed for each activity.

Table 14-1 Composing a document

Object Formula or Event

Form Initialize Event

Form Window Title

Form Query Open Event/WebQuery Open Event

Subject Field Default Value Formula

Subject Field Initialize Event

From Field Value Formula

From Field Initialize Event

Counter Field Value Formula

Counter Field Initialize Event

DisplayNum Field Value Formula

DisplayNum Field Initialize Event
 Chapter 14. Programming for Domino 6 591

Table 14-2 Saving a Document Using @Command([FileSave]) or File - Save

Table 14-3 Closing the Window using @Command([FileCloseWindow]) or File - Close

Table 14-4 Reopening the Document in Read Mode

Body Field Value Formula

Body Field Initialize Event

Subject Field Entering Event

Form PostOpen Event

Object Formula or Event

Form QuerySave Event

Subject Field Input Translation Formula

Counter Field Value Formula

DisplayNum Field Value Formula

Subject Field Input Validation Formula

Object Formula or Event

Form QueryClose Event / WebQuery Close Event

Form Terminate Event

Subject Field Terminate Event

From Field Terminate Event

Counter Field Terminate Event

DisplayNum Field Terminate Event

Subject Field Terminate Event

Object Formula or Event

Form Initialize Event

Form Window Title Formula
592 Domino Designer 6: A Developer’s Handbook

Table 14-5 Toggling from Read Mode to Edit Mode with Document Open

Table 14-6 Toggling from Edit Mode to Read Mode with Document Open (No Changes)

Table 14-7 Toggling from Edit Mode to Read Mode with Document Open (Saving
Changes)

Form Query Open Event / WebQuery Open Event

Subject Field Initialize Event

From Field Initialize Event

Counter Field Initialize Event

DisplayNum Field Value Formula

DisplayNum Field Initialize Event

Body Field Initialize Event

Form PostOpen Event

Object Formula or Event

Form QueryModeChange Event

Subject Field Entering Event (depends on cursor)

Form PostModeChange Event

Object Formula or Event

Form QueryModeChange Event

Form PostModeChange Event

Object Formula or Event

Form QueryModeChange Event

Same sequence as for saving a
document

Form PostModeChange Event

Form QueryClose Event / WebQueryClose Event
 Chapter 14. Programming for Domino 6 593

Table 14-8 Moving Cursor From One Editable Field to Another

Table 14-9 Refreshing Fields While in Edit Mode (F9)

Sequence of events in a complex example
Figure 14-16 on page 615 illustrates the sequence of events in a form which
contains a subform.

Same sequence as for closing a
document

Same sequence as for reopening a
document in read mode

Object Formula or Event

First field Exiting Event

Second field Entering Event

Object Formula or Event

Subject Field Input Translation formula

Counter Field Value Formula

DisplayNum Field Value Formula

Subject Field Input Validation Formula

Form PostRecalc Event
594 Domino Designer 6: A Developer’s Handbook

Figure 14-6 Sequence of events

Following is the sequence of events when the document is opened:

1. Initialize of Globals

2. Initialize of Form

3. Queryopen of Form

4. Initialize of Field1 (contained in Form)

5. Initialize of Subform

6. Queryopen of Subform

7. Initialize of Field2 (contained in Subform)

8. Entering of Field1

9. Postopen of Form

10.Postopen of Subform
 Chapter 14. Programming for Domino 6 595

Following is the sequence of events when the document is closed:

1. Queryclose Form

2. Queryclose Subform

3. Terminate Form

4. Terminate Field1

5. Terminate Subform

6. Terminate Field2

7. Terminate Globals

14.4 LotusScript programming tips and considerations
The following section will give you some help in structuring your LotusScript code
for event programming within Domino.

14.4.1 General suggestions
Do any or all of the following to improve your scripts:

� Declare all variables in the global definitions for an object and use the Option
Public statement. Next, instantiate the variables in the PostOpen event or in a
subroutine that you can call from either the QueryOpen event (for an existing
document), or the PostOpen event (for a new document). Your variables will
be easier to find and maintain, and you’ll be able to use them in any script for
the object.

� It is recommended that you use Option Explicit or Option Declare to make
certain that you have declared all variables used in your application. Domino
6 has a new feature to ensure that this always is included; refer to 12.6.5,
“Automatically add Option Declare” on page 397.

� Store subroutines and functions in the global definitions for a form or
navigator. Then you can use the subroutines or functions with any object on
the form or navigator.

� To reuse a segment of script in multiple scripts, put the segment into a
function or subroutine or use script libraries (refer to 14.4.4, “Using script
libraries” on page 600 for more information on script libraries).

� Avoid too many nested levels of parenthesis in a single statement.

� Modularize your code so that each subroutine or function accomplished a
single task that you can describe in a few words. Modules should not be
overly long - 40 lines is getting long.
596 Domino Designer 6: A Developer’s Handbook

� To debug a script that runs on a shared field, insert the field into a temporary
form so that you’ll have a place from which to run the debugger.

For complete information on LotusScript, see the online Lotus Notes Help
information or the Programmer’s Guide.

14.4.2 Use consistent variable names
The Domino templates use a set of standard variable names, as shown in
Table 14-10. For example, in the Domino templates, the variable note always
refers to the current back-end document.

Table 14-10 Standard variable names

Class name Object
variable

Comments

NotesSession session

NotesDatabase db

NotesView view

NotesViewColumn column

NotesDocument note Refers to the data associated with the
current document.

parent The parent of the current document.

child A child of the current document.

profile A profile document from which you are
retrieving processing parameters.

NotesItem item

NotesRichTextItem rtitem

NotesEmbeddedObject embobj

NotesDocumentCollection documents

responses Use if you are working within one
collection of responses to the current
document.

children An alternative to using the variable name
responses. Use if you’re using child as the
NotesDocument object variable.
 Chapter 14. Programming for Domino 6 597

Using these names in your own scripts makes them easy to read and
understand, keeps them consistent, helps you maintain them more easily, and
may help to share the code with other developers.

Consider using all lowercase letters for object variables, and a combination of
lowercase and uppercase (for example, VariableName) for other variables.

When passing values to a subroutine or function, use the same variable names
in the called routine as in the calling routine. For example, don’t call something
StatusNumber in one and StatNo in the other. Consistent naming ensures that
others can easily read and understand the script.

Note: This approach should not, however, be used as a general rule. If a module
does its job of making some code generally available from different locations, it is
likely that it will not be called with the same arguments from each, so the
parameters cannot match all of the arguments. The parameter names should
contribute to the understanding of that module (for example, use “sourceDoc”
and “destDoc”, instead of necessarily trying to match the names of the calling
arguments).

14.4.3 Reserved fields
There are reserved fields in Domino that you can use to automatically add
functionality that you would otherwise need to program yourself.

NotesDateTime date1,
date2, …

Consider using for comparing dates.

NotesAcl acl

NotesAclEntry aclentry

NotesAgent agent

NotesDbDirectory dbdir

NotesLog log

NotesUiWorkSpace ws

NotesUiDocument source Already an argument to the form events —
using this name keeps your scripts
consistent.

uidoc To use, set uidoc = source in PostOpen.
Then you can use this object variable in
field and action scripts in the form.
598 Domino Designer 6: A Developer’s Handbook

Table 14-11 lists all the reserved fields for mailing documents.

Table 14-11 Reserved fields for mailing documents

Table 14-12 lists all reserved fields for general use.

Table 14-12 Reserved fields for general use

Example
When a document with its contents changed is being closed, a dialog box is
presented to the user, asking whether the changes should be saved or not.

Reserved field name Description

MailOptions Gives users the option of mailing a document.

Sign Sign creator’s name to prevent tampering.

SaveOptions Controls whether documents are saved when closed.

Encrypt Encrypts mail.

SendTo Sends mail to users listed in field.

CopyTo Sends copy to users listed in field.

BlindCopyTo Send blind copy to users which are listed in field.

DeliveryPriority Delivers mail high, medium, or low priority.

DeliveryReport Returns a report when mail is delivered to recipient.

ReturnReceipt Returns a receipt when recipient reads mail.

MailFormat Routes mail via cc:Mail.

Note: The mail fields items, from SendTo to the bottom of the list, have special
meaning only if the document is actually mailed—the mere presence of a
SendTo field does not cause mail to be sent.

Reserved field name Description

Categories Categorizes documents.

$VersionOpt Controls version tracking for documents.

FolderOptions Puts new documents in folders.

SecretEncryptionKeys Encrypts documents with secret, rather than public,
encryption keys.
 Chapter 14. Programming for Domino 6 599

Setting SaveOptions to “0” before closing the document prevents the dialog from
being displayed. Thus, the document is closed with all changes discarded.

14.4.4 Using script libraries
A script library is a place where you can store code segments that you want to
use from other scriptable objects. You may code options, declarations, an
initialize subroutine, a terminate subroutine, and user scripts.

To create a new Script Library, choose the Shared Code - Script Library design
view in Domino Designer and click New LotusScript Library. The new
LotusScript Library is created.

You can write the code inside the initialize and terminate subroutine, or you can
create your own subroutines. This code is not usually routines itself, but you
define additional functionality and call these from outside the library.

To create your own subroutines, write a statement such as Function or Sub
outside of an existing script. The editor automatically creates a new script and
transfers your code there.

Figure 14-7 shows the Discussion Routines script library in the Discussion
database, which contains GetDbPath and InstatiateObjects subroutines.

Figure 14-7 Discussion Routines script library

To incorporate a script library into a scriptable object, enter a Use statement in
the (Options) script for the object or for the (Globals) object.
600 Domino Designer 6: A Developer’s Handbook

You can see how script libraries are used in the TeamRoom database by opening
the SendReminder agent:

Use "DiscussionRoutines"

The name is not case-sensitive and should not contain spaces. Specify the name
as a character literal or named constant.

Figure 14-8 shows how the SendReminder agent (ReminderDoneMsg
subroutine) uses the GetDBPath routine of the DiscussionRoutines script library:

Figure 14-8 Calling the script library in the agent

The code in the (Options), (Declarations), Initialize, and Terminate scripts of the
library becomes available as though it were in the current object’s corresponding
scripts. User scripts in the library become available as though they were in the
current object.

Tip: When doing object-oriented coding, a script library is a great place to
define a class or set of related classes. Class definitions go into the
(Declarations) section.
 Chapter 14. Programming for Domino 6 601

14.4.5 Using the Template database
When you are developing a Domino application, you usually use much of the
same code that you have used before for performing standard procedures. Many
different applications contain the same procedures (for example, removing extra
spaces in a field, creating a chart in the field, and so on).

For this reason, it is very useful to use the Template databases to store the most
commonly used LotusScript, Java Script and Java code, actions and buttons, and
other functions. This is better than using cut and paste because if you need to
change the code (for example, to add new LotusScript code to manipulate a
field), then you only need to add the code in one place, and the updated code will
be used in each application that references it.

Figure 14-9 illustrates this process diagramatically.

Figure 14-9 Template database

Let’s discuss this diagram in more detail:

1. The Template database contains commonly used code, actions, shared fields,
and so on. Sub ExtraSpaces is a Script Library code segment that removes
all extra spaces in the current field.
602 Domino Designer 6: A Developer’s Handbook

2. The ExtraSpaces class is used in three databases, and it is copied to each
database.

3. The ExtraSpaces Script Library is now stored in each database.

Updating the ExtraSpaces subroutine
When you want to update elements or code segments, you only need to make
changes in the Template databases. For our example, you need to add code into
the ExtraSpaces Script Library.

1. Open the Template database and go to the ExtraSpaces code segment.

2. Make the required changes and save the ExtraSpaces Script Library.

3. If you have selected the Inherit options, and Database1, Database2, and
Database3 are on the same server as the Template database, then Domino
automatically runs the inherit program.

The server will refresh the databases overnight. (You can also run the refresh
commands manually by selecting the database that you want to refresh and
then selecting File -> Database -> Refresh Design).

4. After the refresh, then Database1, Database2, and Database3 will have the
new updated version of the ExtraSpaces Script Library.

14.4.6 Catching errors at compile time
Specifying Option Declare or Option Explicit in the (Options) event of the object
forces you to declare variables explicitly. With this option in effect, any
undeclared variables will be flagged during compile time. This is useful if you
design large applications, and it avoids having to search for typing errors.

14.4.7 Improving form performance
A form that performs well is one that Domino can calculate quickly for display, so
that documents created with the form are more likely to open quickly.

To improve form performance, do any or all of the following:

� Avoid overusing hide-when formulas on forms. Each formula that Domino
must calculate when opening a form slows the application down.

Note: When you use the copy and paste options, Domino automatically
asks if you want to inherit the changes from the Template database when
the ExtraSpaces Script Library changes.
 Chapter 14. Programming for Domino 6 603

Before you use a hide-when formula, try using a computed subform or a
hide-when condition, such as “Hide when editing” or “Hide when reading.”

� If you must use hide-when formulas to hide buttons on an Action bar, use
@Command([RefreshHideFormulas]) or the LotusScript
RefreshHideFormulas method in the NotesUIDocument in the action formulas
or scripts to force calculation of the hide-when formulas.

This closely correlates the appearance of different buttons with users’ button
clicks, and allows each calculation to occur only when needed. In other
words, if you only recalculate hide formulas, use this instead of a general
refresh.

� If a form has keyword fields (for example, in a layout region), and you want
formulas to calculate based on changes in those fields (for example,
hide-when formulas that progressively disclose items in the layout region)
select the “Refresh fields on keyword change” field option instead of the “Auto
refresh fields” form option.

Domino performs more calculations when “Auto refresh fields” is enabled; for
example, it refreshes all formulas every time a user moves between fields,
instead of just when values in keyword fields change.

� Remove infrequently used items from a form (for example, redesign your
application to display infrequently used items in a dialog box).

� Consider limiting, or eliminating entirely, the use of shared fields or subforms
on any form that must open quickly.

� Minimize the number of fields per form, because each field is calculated when
a document is opened, refreshed, or saved.

� Consider putting field formulas into form events rather than into the fields
themselves, so that you can more easily control which formulas are calculated
at each event. Avoid using hidden fields for processing events (unless
required).

� Avoid using too many DbLookups in your keyword fields. Avoid using
@UserRoles multiple times, or @Dbfunctions and @UserNameList.

If your application was created in Release 3.x, it may include forms with hidden
fields containing formulas that process a document when it is opened or saved.
To improve the performance of the application, convert the formulas to
LotusScript, and use the PostOpen and QuerySave form events.

Tip: For consecutive multiple paragraphs that use the same hide/when
formula, calculate the formula just onc, for efficiency.
604 Domino Designer 6: A Developer’s Handbook

14.4.8 When to use formulas and LotusScript
Generally speaking, the best language to use is one that accomplishes a task
with the least programming. While there are differences in performance that may
affect your choice of programming language, in most cases such differences are
minor compared to the cost of developer’s time in creating and maintaining the
application.

From this standpoint, macro language is ideally suited most operations on the
current document. Since the document context is assumed, you do not have to
write code to locate the current document, and @functions automatically handle
the Notes native data types (for instance, to work with a date value, you do not
need a special NotesDateTime object). Macro language is also a good choice for
making simple changes to existing documents in a single database.

Use LotusScript for more complex document changes, for tasks involving
changes to multiple databases, for creating new documents from scratch, or,
broadly speaking, if you can’t find a way to do what you want with macro
language.

In general, formulas are best used for working within the object that the user is
currently processing (for example, to return a default value to a field or to
determine selection criteria for a view). Scripts are best used for accessing
existing objects (for example, to change a value in one document based on
values in other documents). Scripts provide capabilities that formulas do not,
such as the ability to manipulate RichText fields. However, formulas provide
better performance in some situations, and may be more convenient for simple
applications.

When you’re ready to use both, deciding whether to use LotusScript or the
Domino formula language for a given task usually depends on the complexity of
the task. Consider these questions when making your decision:

Do you need to process a quantity of data?
A formula that “touches” many databases or documents using @functions must
rely on the Notes user interface to access each document, whereas LotusScript
accesses the documents more efficiently and quickly.

For example, LotusScript is a good tool for creating an agent that scans all the
databases on your workspace and returns information such as size of database,
percent used, number of documents, and so on. LotusScript is also a good tool
for running a full-text search on multiple documents and performing an action
with the results of the search.
 Chapter 14. Programming for Domino 6 605

Are you using Domino object model front-end or back-end classes?
Domino object model (front-end classes) use the same Domino code as their
equivalent @commands, so LotusScript will not perform better than the formula
language when you use these classes. The database (back-end) classes,
however, use different code, and perform more quickly than the equivalent
@functions.

For example, avoid using the front-end class NotesUIDocument to perform many
field updates. The back-end class NotesDocument is much faster, and allows you
to assign data types (including rich text) and to add new (hidden) fields. The
front-end class allows you to update only fields that already exist on the form,
and it allows you to insert only text in the field, as @Command([EditInsertText])
does.

In addition, front-end classes will not work in scheduled agents run by a server;
they work only in agents run from a user’s workstation (for example, from the
menu).

Do you need to manipulate the currently selected object?
Use the formula language, instead of LotusScript.

Do you need to program buttons on an Action bar?
Consider using the formula language instead of LotusScript. Button actions are
usually simple and perform tasks usually accomplished directly through the
Notes user interface, such as saving or closing a document.

Do you need to return the default value to a field?
Use the formula language, instead of LotusScript.

Do you need to return the title of a window?
Use the formula language, instead of LotusScript.

Do you need to control a work flow process from a form?
LotusScript works best for controlling workflow with form events (especially the
QuerySave or onSubmit event, which is preferred in Domino 6) because it can
handle the more complex tasks you may want to accomplish, such as looping
and setting multiple variables.

For example, you can require a user to fill out fields on a form in a predetermined
order by manipulating enter and exit field events, or you can prevent a user from
opening, saving, or editing a form until certain conditions are met.

Are you including too many @functions in one formula?
If a formula includes many @functions in sequence, try changing the formula to
LotusScript. However, formulas that need only a single @function, such as
606 Domino Designer 6: A Developer’s Handbook

@Command[FilePrint], are more efficient and perform better than scripts that do
the same thing.

14.4.9 Using Evaluate to combine LotusScript and formulas

Use the Evaluate function in LotusScript to combine pieces of formula language
with LotusScript. This allows you to make your scripts leaner wherever
@functions do something in fewer lines than LotusScript does. Keep in mind that
including formulas in scripts may make the scripts easier to write, but will not
necessarily improve performance.

You can use Evaluate to include any @functions except the ones that directly
interact with the Notes user interface (such as @Prompt, @DialogBox,
@PickList, and @Command). Several particularly useful @functions to combine
with LotusScript are:

� @Name, which lets you manipulate hierarchical names
� @Replace, which pulls a value from a text list without requiring the looping

that LotusScript would demand
� @Unique, which removes duplicates from a text list
� @Subset, which reads the list from left to right

You can also combine LotusScript and formulas in an application by using them
in different parts of the same form.

The Evaluate function in LotusScript
The Evaluate function executes a LotusScript formula.

Syntax:

Evaluate(macro [, object])

Elements:

� macro

(Mandatory) This is a string expression specifying the text of the Notes macro,
in the syntax that Domino recognizes. Refer to Domino documentation for the
correct syntax of the macro.

� object

Note: If the macro text is in a constant or string literal, Domino needs to do
only initial processing of the macro once at compile time, while variable
strings incur that processing each time the Evaluate function is called.
 Chapter 14. Programming for Domino 6 607

(Optional) This is a NotesDocument that provides the context for evaluation of
the formula. If the formula uses a field name, it is referring to the field in this
document. Other Lotus products that support LotusScript (for example, 1-2-3)
use a different object type here.

Example:

result = Evaluate("@Sum(Numlist)", doc)

or

Const NotesMacro$ = "@Sum(NumList)"
result = Evaluate(NotesMacro$, doc)

Return value
The Evaluate function returns a Variant array. The datatype of the array elements
depends on the type of the formula return value. If the return value is a list, each
array element contains one list value. If the formula returns a single value, the
array will contain that value at element 0.

Sample code
This script runs when the user exits from the Subject field and changes the
characters to proper case:

Sub Exiting (Source As Field)
Dim ws As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Dim doc As NotesDocument
Dim eval As Variant
Set uidoc = ws.CurrentDocument
Set doc = uidoc.Document
eval = Evaluate("@ProperCase(Subject))", doc)
Call doc.ReplaceItemValue("Subject", eval)

End Sub

In this example, we use the Evaluate function to get @ProperCase carried out.
Parameters to the Evaluate function are the string containing the @function and
the field name, as well as the object that contains the field.

Note: If the formula returns an error result, this is returned as a scalar value;
not an array. Use IsArray to detect this, or use @IsError in the formula to
prevent returning an error result.
608 Domino Designer 6: A Developer’s Handbook

14.4.10 Making field value changes effective
You can use the Refresh method of the NotesUIDocument class to make
changes effective on a document that is in edit mode. (This has the same effect
as using View/Refresh on the Lotus Notes user interface.)

When you modify ReplaceItemValue or remove RemoveItem fields in a
document in your LotusScript program, you need to use the Reload method of
the NotesUIDocument class to make the changes effective in the Lotus Notes
user interface. The following statements are examples to show the Reload
method.

Postopen(Source As Notesuidocument)
 note.RemoveItem("Action")
 note.RemoveItem("SaveOptions")
 note.ReplaceItemValue("Action","Approve")
 source.Reload

source.AutoReload = False

Figure 14-10 Field value change

14.4.11 Using validation formulas and QuerySave/onSubmit
If you are using Input Translation and Input Validation formulas along with
QuerySave (or onSubmit), be sure to do a refresh (source.Refresh) at the

Tip: Since in the above example, the variable uidoc is only used to get the
object of the next lower class, you may also write Set
doc=ws.CurrentDocument.Document to initialize variable doc.

Note: You usually add the following statement at the initialization stage of
your program to improve performance, as it prevents the screen from
refreshing each time you update a field. Remember to manually invoke the
Reload method in your programs when you use this statement.
 Chapter 14. Programming for Domino 6 609

beginning of the script for the QuerySave event. Why? Because the QuerySave
(or onSubmit) event occurs before Notes refreshes the document when saving.

Figure 14-11 shows the field FirstName with a field validation formula.

Figure 14-11 Field translation

You want QuerySave (or onSubmit) to have the properly validated data to
process (for example, you do not want QuerySave (or onSubmit) to process an
empty field, because a validation formula that would have flagged the field as
empty has not yet run).

Refer to Figure 14-15 on page 612; if this code was run—with the field translation
shown in Figure 14-11—it would end up in a messagebox, as shown in
Figure 14-12.

Figure 14-12 onSubmit messagebox - without translated data

As we can see, the messagebox, or the onSubmit event code, does not have the
translated data, because the code checks exactly what is in the
NotesUIDocument at runtime.
610 Domino Designer 6: A Developer’s Handbook

The NotesUIDocument and the field FirstName has not been refreshed, and will
still be in lowercase, even though the uppercase function in the Input Translation
has run.

To get around this, we need to change the code in the onSubmit (QuerySave)
event, as shown in Figure 14-13.

Figure 14-13 Refreshing the NotesUIDocument before running rest of code

By using the Refresh method of the NotesUIDocument, the rest of the code will
now work on translated data. It will reflect that the field value in fact has been
translated by the Input Translation formula; the result is shown in Figure 14-14.

Figure 14-14 NotesUIDocument is refreshed - shows accurate data
 Chapter 14. Programming for Domino 6 611

Figure 14-15 onSubmit on the form

14.4.12 Error handling
Ideally, you would not need to write anything to handle run-time errors; however,
some errors may occur at run-time, such as running out of disk space or dividing
by zero, causing the script to stop unexpectedly. To avoid this situation, you can
include error-handling procedures in your script.

Using On Error and Resume statements
By using On Error and Resume statements in your script, you can handle
run-time errors that may occur. These statements are built-in functions provided
by LotusScript.

The script needs the following steps to handle the error:

1. Trap the error using an On Error statement and specify where to go to handle
the error.

For example, if the error occurs, you can go to the label ERRORPROC:

 Dim x As Integer, y As Integer, z As Integer
 x = 3
 y = 0
 On Error GoTo ERRORPROC
 z = x/y
Exit Sub
ERRORPROC:

2. Script the error-handling process. For example, at the ERRORPROC: label:
612 Domino Designer 6: A Developer’s Handbook

ERRORPROC:
 MessageBox("Divide error")
 y = CInt(InputBox("Enter new number"))

3. Complete the error-handling process by using a Resume statement to go
back to the statement where the error occurred:

 Dim x As Integer, y As Integer, z As Integer
 x = 3
 y = 0
 On Error GoTo ERRORPROC
 z = x/y
Exit Sub
ERRORPROC:
 MessageBox("Divide error")
 y = CInt(InputBox("Enter new number"))
 Resume

Creating an error handler for debugging
It is useful to have an error handler to help debug your programs, as the
LotusScript debugger ends when errors occur. To prevent this from happening,
you can create an error handler like this:

On Error Goto ErrorHandler
ErrorHandler:

Messagebox "Error:" & Error(Err), 0+64, "Error!!"
Print "Error No. : " Err
Print "Description : " Error(Err)
Print "Line No. : " Erl
Resume Next
Exit Sub

Be aware of the “Resume Next” statement, and how it works. “Resume Next”
specifies that program execution continues with the next statement after the
statement that generates the error. This might cause loops if not handled with
care and caution. Make sure that your error handler handles and avoids possible
loops.

While you are writing scripts, you will often find errors that require fixing. Domino
recognizes two kinds of LotusScript errors: compile errors and run-time errors.
Let’s discuss these in more detail.

Note: If you include the constant definition file (%Include “LSCONST.LSS”,
you can use constant symbols (MB_OK, MB_ICONINFORMATION and so
on), instead of values 0 and 64 in the Message box statement.
 Chapter 14. Programming for Domino 6 613

Compile errors
Compilation of your script takes place when you save it. Since Domino will not
allow you to save a script with compile errors, if compile errors are reported, then
the script will not be saved. Therefore, you will need to correct all compile errors
first.

Run-time errors
A run-time error is an error that cannot be detected during compilation. Run-time
errors are found while Domino is running the script, causing the program to stop.
The script may have the correct syntax, but certain operations may not be
allowed; for example, as the following run-time error shows, division by zero is
not allowed:

Dim x As Integer
Dim y As Integer
Dim z As Integer
x = 5
y = 0
z = x / y

During execution of this code, LotusScript will stop and issue an error message
because dividing 5 by 0 is not a valid operation.

Logical errors
There is yet another error type, which is a logical error. With logical errors, you
may be able to run your script without errors, but the result is not as intended.

The Debugger helps you to detect run-time errors and logical errors.

14.4.13 Enabling the Debugger
It is easy to enable debug mode. Before running your script, do the following:

1. Choose File -> Tools >- Debug LotusScript.

2. To check if the Debugger is enabled, choose File -> Tools. If the Debugger is
on, a checkmark will show next to the menu option; refer to Figure 14-16 on
page 615.
614 Domino Designer 6: A Developer’s Handbook

Figure 14-16 Starting the LotusScript Debugger

If you click the Debug LotusScript menu again, debug mode is disabled.

If the Debugger is enabled when you start running any LotusScript, the Debugger
is launched and the script stops at the first line; see Figure 14-17 on page 616.
 Chapter 14. Programming for Domino 6 615

Figure 14-17 LotusScript Debugger

In this example, the script is in interrupt mode.

Debug mode
When you run a script in debug mode, the script shows one of three states:

� When a script is interrupted at a breakpoint, the Debugger has control.

� When a script is stepping, control passes to the script and then back to the
Debugger after a single statement in the script is performed.

� When a script is continuing, it runs uninterrupted until a breakpoint or the end
of the code is reached, or until a Stop statement is encountered or an
unhandled error event occurs.

Interrupt mode
While the script is in interrupt mode, you can do one of the following:

� Inspect the script.
� Inspect the value of variables and properties.
� Control which is the next statement that will be performed.
� Inspect other defined objects, events and the scripts related to them.
616 Domino Designer 6: A Developer’s Handbook

You can control which statement is the next to be performed in interrupt mode by
clicking the following options:

� Continue - to continue until a break point is reached

� Step Into - to perform the current statement and step to the next statement

� Step Over - to perform the current statement and step to the next statement,
stepping over the subprogram if the current statement calls a subprogram

� Step Exit - to continue executing the current subprogram and stop in the
subprogram that called it at the line following the call

Making breakpoints
If you find a run-time or logical error, inspect your script and make breakpoints at
the statement (or around it) where you suspect the error is occurring. You can
then run your script, and it will stop at the breakpoint. In interrupt mode, you can
inspect the value of important variables and properties.

One-step execution
During one-step execution, only the current statement is performed before the
code is stopped. You can then inspect the values of variables or properties before
and after performing the statement.

Variable inspection
1. Click the Variables tab in the bottom pane to access the variables window.

The variables defined for the procedure appear in a three-column display,
showing the name, data type, and value of each variable.

2. To view array or type members, click the plus sign (+) to the left of the variable
name.

Using the Debugger - a simple example
Here we illustrate the use of the Debugger on the database we used earlier as an
example for the PostOpen event. Follow these steps:

1. Choose File -> Tools -> Debug LotusScript to enable debug mode.

2. Open the database and create a new document. The Debugger window will
be displayed; see Figure 14-18 on page 618. The execution of the script stops
at the first statement.
 Chapter 14. Programming for Domino 6 617

Figure 14-18 Debugger window

The script added to the form object has been launched by the Postopen
event, and the execution stops at the marked sentence.

Now, go through the debugger.

3. Double-click or click the statement Call Source.FieldSetText.… and press
F9 in the upper pane. This creates a breakpoint.

4. Click the Variables tab. In this pane, you can see the values of your variables.

5. Click the + symbol next to Source in the bottom pane. You can see the
properties of the Source instance, which is of type NotesUIDocument. This
class represents the document that is currently open in the Notes workspace.

6. You can see that the variable session does not yet have values.

7. Click the Continue action button.

Figure 14-19 Stop in breakpoint

8. The script runs and stops at the breakpoint that you made, as shown in
Figure 14-19. The session variable now has a value.

Note: For objects containing a data structure, the values of the data items
are also shown on the top level.
618 Domino Designer 6: A Developer’s Handbook

9. Click Continue to run the script to its end. This will then close the Debugger.

This very simple example shows how easy it is to control the execution flow of the
program, and to inspect variables.

Enabling the Debugger LotusScript Server agent
Domino 6 has a new, remote Debugger for debugging the LotusScript Server
agent. With it, you can debug any agents or script libraries currently running on
the server remotely. You can use the remote Debugger to step through and
debug LotusScript agents running on the server.

To enable debug mode for this new function:

� Choose File -> Tools -> Debug LotusScript Server Agent

The agent you want to debug must be running at the time that you start the
remote debugging tool. This enables you to, in real time, debug a script running
on a server with the proper access.

More information on the remote Debugger, refer to 12.6.2, “Remote debugger” on
page 387.

14.4.14 Tracing programs without a debugger
There are several ways to trace programs without a debugger, though you will
need to add some statements into the programs to use them. For example, you
can use the PRINT and MESSAGEBOX statements to look at variables in your
programs.

PRINT statement
The Print statement displays constant values, and the contents of variables, on
the status line at the bottom of the Notes interface:

Print "Sending Notification"

The result of this statement is shown in Figure 14-20.

Figure 14-20 Print “Sending Notification”

Note: For variables of simple types, you can change their values while the
Debugger is paused. Click the variable in the variables tab, and type a new
value in the field below.
 Chapter 14. Programming for Domino 6 619

When you click the status line, you will see the message list box shown in
Figure 14-21, which contains the Print message history.

Figure 14-21 Print message history messagebox

To clear the status line, simply issue the Print statement with no arguments. This
clears the status line. However, you can still click the cleared area to display the
message box.

You can also see the messages created by the Print statement by clicking the
Output button when using the Lotus Notes debugger; see Figure 14-22.

Figure 14-22 Output message in Lotus Notes Debugger

Messagebox statement
The Messagebox statement displays a dialog box with buttons to show
messages, as shown in the following example (note that the vertical bar (|) is the
string delimiter for multi-line strings):
620 Domino Designer 6: A Developer’s Handbook

%INCLUDE "LSCONST.LSS"
Dim twoLiner As String
twoLiner = |This message
is on two lines|
MessageBox twoLiner, MB_OKCANCEL, "Demo"

14.5 Using JavaScript
With Domino 6, you can use JavaScript to write applications that will support both
the Notes client and the Web browser. All events associated with an object are
programmable by using JavaScript, LotusScript or even simple @functions, and
can be easily accessed within the Programmer’s Pane.

JavaScript allows you to handle events such as onLoad (for a Web page),
onClick (for an input button on form), onChange, onBlur, onFocus (for input
fields), and so on. You can use these events to trigger JavaScript functions that
can also perform some complex operations.

In a Web browser, JavaScript functions can access all elements on a Web page
(like input fields), as well as properties and methods that control the status and
the behavior of the Web browser window itself.

Adding JavaScript to Domino forms and fields is particularly useful, as it allows
you to create forms with a more dynamic behavior—without adding workload to
the Domino server. For example, with JavaScript, field values can be validated
locally on the browser, instead of on the Domino server, after submitting.

14.5.1 Using JavaScript in Domino Design elements
To use JavaScript in your application, add JavaScript code to events as you do
with LotusScript. Table 14-13 on page 622 lists some of the supported JavaScript
events for forms and page.

Tip: Server agents write their Print and Messagebox output to the server log
(log.nsf, “Misc events” view) and to the server console. This is also very handy
for debugging!
 Chapter 14. Programming for Domino 6 621

Table 14-13 Some supported JavaScript events for forms/pages

Note: Domino supports the standard JavaScript object model. For information
on the JavaScript object model, see the following sites:

http://developer.netscape.com/tech/javascript
http://developer.netscape.com/docs/manuals/js/client/jsguide
http://msdn.microsoft.com/scripting

Browser implementation of the object model depends upon the browser. The
Notes client implements the object model, with some exceptions.

For information on the Notes implementation, see the Domino 6 Client
Document Object Model:

http://www-10.lotus.com/ldd/doc

Notes Form event handlers Description

onLoad Similar to PostOpen event.

onUnLoad Before document is closed.

onSubmit Window event, before Document saved.

onReset Window event, before Document reset.

onBlur When the forms loses focus.

onClick An object on a form is clicked.

onDblClick The user double-clicks a form element or a link.

onFocus The form receives focus.

onHelp Triggered when the user presses the F1-Help key.

onKeyDown The user presses a key down.

onKeyPress The user presses or holds down a key.

onKeyUp The user releases a key.

onMouseDown The user presses a mouse button down.

onMouseMove The user moves the cursor.

onMouseOut The cursor leaves the form or page.

onMouseOver The cursor moves over the form or page.

onMouseUp The user releases a mouse button.
622 Domino Designer 6: A Developer’s Handbook

For form elements (for example, fields), you can provide JavaScript for the events
listed in Table 14-14.

Table 14-14 Supported JavaScript events - fields

If you want to add JavaScript code for other Window events that are not handled
by the Notes client, you can do this in the HTML Body Attributes object for the
form. Likewise, if you want to add an event for a form element, you can do it in the
HTML Body Attributes Field event.

Code in pass-thru HTML and the HTML body attributes fields are passed to the
browser, but ignored in the Notes client.

Note: JavaScript must be enabled in the User Preferences in order to be
executed by the client.

Notes Form element
event handlers

Description

onFocus Entering the object.

onBlur Exiting the object.

onChange When object is changed.

onClick When object is selected.

Attention: If you enter JavaScript code into a formula, keep the following rules
in mind:

1. Within the text string that you are going to put in the formula, every double
quote (“), single quote (‘), and backslash (\) must be preceded by a
backslash (\). For example:

 IBM

must become:

 IBM

2. The same text string must be included between two double quotes before
pasting it into the formula. For example:

" IBM "
 Chapter 14. Programming for Domino 6 623

The browser Javascript Object Hierarchy
The Javascript Object Hierarchy is shown in Figure 14-23.

Note: When you click any of the objects in JavaScript Object Model Hierarchy
picture, the corresponding chapter about the JavaScript object will be opened
from the Lotus Domino Designer 6 Help database.

Figure 14-23 Javascript Object Model in Designer

14.5.2 Mapping Domino objects to the Document Object Model
In this section, we illustrate how Domino objects are mapped to the Document
Object Model as it is used in Web browsers. We show the following for each
Domino object:

� Its type in the Document Object Model

� The HTML that is generated by Domino

� A JavaScript example using the object

Important: For running JavaScript programs in the Notes Client, some of the
object relationships illustrated do not make sense; for example, there is only
one form attached to a document at any time. Furthermore, not all objects are
available on the Notes client
624 Domino Designer 6: A Developer’s Handbook

Text field

Date/Time field

Number field

Rich Text field

DOM type Text

HTML <INPUT TYPE="text" NAME=... ...>

Example document.forms[0].textField.value =
"default";

DOM type Text

HTML <INPUT TYPE="text" NAME=... ...>

Example document.forms[0].dateField.value = "1999/01/01";

DOM type Text

HTML <INPUT TYPE="text" NAME=... ...>

Example document.forms[0].counter.value =
 parseInt(document.forms[0]. counter.value) + 1;

DOM type TextArea or applet

HTML <TEXTAREA NAME=... ...> or <APPLET NAME=... ...>

Example If the Rich Text field is shipped to a browser as HTML, or is used
within the Notes Client, the field is treated as a TextArea.
The value of a TextArea is a unicode string.
To clear out a field named "richText":
document.forms[0].richText.value = "";
If the Rich Text field is shipped to a browser as an applet, the
<APPLET> tag is used.
To set a field named "richText" to be "Please don't!":
document.applets.richText.setText("text/html", "Please
don't!");
 Chapter 14. Programming for Domino 6 625

Authors/Names/Readers field

Password

Hidden field

Formula field

DOM type Text

HTML <INPUT TYPE="text" NAME=... ...>

Example In Notes, extra “helper” buttons will
appear to aid in inputting a value. These
helper buttons are not accessible to
JavaScript.

DOM type Password

HTML <INPUT TYPE="password" NAME=... ...>

Example var passwd =
document.forms[0].passwordField.value;

DOM type Any field, regardless of type

HTML <INPUT TYPE="hidden" NAME=... ...>

Example document.forms[0].textField.value = "default";

Note: Hidden fields are only sent to the browser if the form property “Generate
HTML for all fields” is selected.

DOM type Text

HTML <INPUT TYPE="text" NAME=... ...>

Example document.forms[0].formulaField.value = "Select @All"
626 Domino Designer 6: A Developer’s Handbook

Dialog List, Listbox, Combobox field

Checkbox field

DOM type Select

HTML <SELECT><OPTION ...> ... </SELECT>

Example In Notes, extra “helper” buttons will appear to aid in inputting a value.
These helper buttons aren't accessible to JavaScript. To find out
which keyword has been selected from a (single valued) keyword list
associated with a field named "Grade":
var list = document.forms[0].Grade;
alert(list.options[list.selectedIndex].text);

Note: If keyword synonym is used, value is the synonym, while text is the
display text.

DOM type Checkbox

HTML <INPUT TYPE="checkbox" NAME=... ...>

Example To show each choice selected in a field named "checkboxField":
var boxes = document.forms[0].checkboxField;
for (var i = 0; i < boxes.length; i++) {
 var box = boxes[i];
 if (box.checked) alert(box.value + " is checked");
}

Note: If keyword synonym is used, value is the synonym, while text is the
display text.
 Chapter 14. Programming for Domino 6 627

Radio Button field

Action

Computed text

DOM type Radio

HTML <INPUT TYPE="radio" NAME=... ...>

Example To display which radio button from the field "radioField" is checked:
var result = "--no result--";
var buttons = document.forms[0].radioField;
for (var i = 0; i < buttons.length; i++) {
 var button = buttons[i];
 if (button.checked) {
 result = button.value;
 break;
 }
}
alert(result);

Note: If keyword synonym is used, value is the synonym, while text is the
display text.

DOM type Link

HTML

Example If an Action bar is emitted as an applet to a Web browser, the actions
are inaccessible to JavaScript. To programmatically fire the first action
on a page: document.links[0].click();

DOM type Span

HTML ...

Example Accessed as a “Span” in a browser, but is inaccessible within Notes.
To change the value of computed text field named "cText":
document.all.cText.innerHTML = "new value";
628 Domino Designer 6: A Developer’s Handbook

Link hotspot

Text pop-up hotspot

Button hotspot

Formula pop-up hotspot

DOM type Link

HTML

Example To change where a link named “launch” will link to, if clicked:
document.links.launch.href = "http://www.lotus.com";

DOM type not accessible

HTML inline text

Example n/a

DOM type Button

HTML <INPUT TYPE="button" NAME=... ...>

Example To change the label of a button named “pushMe”:
document.forms[0].pushMe.value = "Go ahead. Push me!";

DOM type not accessible

HTML inline text

Example n/a
 Chapter 14. Programming for Domino 6 629

Action hotspot

Picture, Image Resource

Picture, Image Resource Hotspot

Java applet

DOM type Link

HTML

Example To programmatically perform the action
(as determined by the onClick handler)
behind the first hotspot on a page:
document.links[0].click();

DOM type Image

HTML

Example To change the image associated with a picture named “effects”:
document.images.effects.src =
"/db.nsf/RollOver?OpenImageResource";

DOM type Area

HTML <AREA NAME=... ...>

Example To programmatically leap to the link associated with a hotspot named
“hotSpot”: document.images.hotSpot.click();

DOM type Applet

HTML <APPLET NAME=... ...>

Example To call a public method named “setDate” of an applet named
“DatePicker”: document.applets.DatePicker.setDate(...supply
parameters...);
630 Domino Designer 6: A Developer’s Handbook

Form

14.5.3 Examples of adding JavaScript to forms
This section lists examples of JavaScript.

Using a JavaScript Library
For information on how to include a Javascript on a form/page/subform, refer to
Chapter 12, “New features in Domino 6” on page 347.

The following section contains examples of using JavaScript in forms and fields.
Each of the following examples illustrates effects that you can implement using
JavaScript.

DOM type Window and Form

HTML <HTML>
 ...
<BODY onLoad=... onUnload=...>
<FORM NAME=... ... onSubmit=... onReset=...>
 ...
</FORM>
</BODY>
</HTML>

Example Domino's concept of a form maps onto both a Window and a Form in
the DOM world. The onSubmit and onReset handlers are accessed
through the Form DOM object. All other handlers are hung on the
BODY tag in HTML and accessed via the Window DOM object.
To programmatically submit a form from a button named
“submitButton”, add the following code to submitButton's onClick
handler: this.form.submit();

Note: In a browser, when a document is rendered in read mode, all fields are
generated as inline text and are inaccessible. In Notes, fields in read mode are
accessed exactly as they would be in edit mode:
document.forms[0].fieldName. Though you are free to change their values,
these new values are not stored in the back-end document.

Furthermore, in a browser, computed fields are generated as inline text and
are generally inaccessible.
 Chapter 14. Programming for Domino 6 631

Example 1: Auto-Refresh, Field Validation, and Help fields
The form in Figure 14-24 on page 632 allows a user to insert a percentage value
in one of the two fields, and the other field is then computed as a complementary
percentage. For example, if a user inserts 70 in A, the user will see 30 appearing
in B immediately after changing the focus.

If a number greater than 100 is entered, a JavaScript alert message is displayed.
Also, when the user puts the mouse inside a field, a help message is displayed
on the bottom bar of the Web browser.

To create this form, do the following:

1. Create two Numeric Editable fields, PercentA and PercentB.

2. In the onBlur event of PercentA, type:

if(this.form.PercentA.value<=100)
{
this.form.PercentB.value=100 - this.form.PercentA.value;
}
else
{
 alert('Invalid Percentage A!');
};
window.status=''; "

3. In the onFocus event of PercentA, type:

window.status=
'Insert Percentage A and look to Percentage B'

The onBlur event is triggered each time the focus is moved from a field. Here,
it is used to trigger the validation and auto-refresh “procedure” (if()...else
block) and to set the message bar to blank (window.status= “”).

Fields accessed in these procedures are those on the Web form; therefore,
you cannot access hidden or computed Domino fields using JavaScript,
because these are not fields on the Web page.

Figure 14-24 Percentage A + B = 100%

Note: All validation operations are performed locally, without calling any
server tasks.
632 Domino Designer 6: A Developer’s Handbook

The onFocus event occurs when a user enters an input field, and here it is
used to set the status bar message in order to use it as a help field.

4. In the onBlur event of PercentB, type:

if(this.form.PercentB.value<=100)
{
this.form.PercentA.value=100 - this.form.PercentB.value;
}
else
{
 alert('Invalid Percentage B!');
};
window.status='';

5. In the onFocus event of PercentB, type:

window.status=
'Insert Percentage B and look to Percentage A'

This JavaScript code mirrors that of step 2, and it does not need further
explanation.

An alternative to onBlur is to use onChange as a triggering event for the
validation. This event occurs only when the value of a field is different from the
previous value.

In the same way, you can call a procedure defined in the header of the form that
refreshes fields on that form.

Example 2: setting field values
The field in Figure 14-25 can be reset to today’s date, by clicking the button.
Though this example is very simple, it illustrates a function which could be very
useful— having a button that resets all the fields on a form to their original values.
Again, this action is performed without calling the server. This works in the Web
and Notes client.

Note: There are many solutions for the problem solved by this example.
Another possible solution is to store a unique JavaScript function for the
validation of the entire form in the header of the Web page, instead of doing
the validation inside each field, and then to call it using the following syntax,
for an event such as onChange or onBlur:

onBlur="validateForm()"
 Chapter 14. Programming for Domino 6 633

Figure 14-25 Setting the default value

To create this sample, do the following:

1. Create a button on the form and add the following to the onClick event:

this.form.Date.value = this.form.DefaultDate.value;

The action behind the button assigns the value of the DefaultDate field to the
Date field.

2. Create an Editable Date field and call it “Date”.

3. Create an Editable Date field and call it “DefaultDate”, and put in its default
formula: @Today.

4. In HTML Attributes of DefaultDate, type:

"TYPE=\"Hidden\""

Example 3: using JavaScript with Keyword fields
In this example, the input field is completed automatically when the user selects
a value from a list. Since the selected field is separated by the keyword list, the
user may also introduce a value that is not on the list.

Figure 14-26 Choose country from the list

To create this sample, do the following:

1. Create Choices as a keyword field. In the onChange event, insert:

form.Country.value =
form.Choices.options[form.Choices.selectedIndex].text;

Important: This field will not appear on the Web but it is defined on the
Web form, so it does exist on the browser. If you use the Domino
hide-when formulas instead of TYPE=“Hidden”, the field would not be sent
to the browser, so the sample would not work.
634 Domino Designer 6: A Developer’s Handbook

The onChange event triggers the assignment of the selected value to the field
named Country. SelectedIndex is the number of the selected item of the list.

2. Create Country as an Editable Text field.

Example 4: changing an image on Mouse-Over or Mouse-Out
The image displayed on the screen can be changed when the mouse floats in
and out of it. The following example alternates two different logos, depending on
the position of the mouse pointer.

To create this sample, do the following:

1. Create a form and put the following JavaScript in a Javascript library, and
include it in the JS Header of the form:

logoIBM=new Image(100,40);
logoIBM.src = "/ChilesDirect/ChilePepperSite.nsf/Banners/IBM/
$file/IBM.gif";
logoLotus=new Image(100,40);
logoLotus.src= "/ChilesDirect/ChilePepperSite.nsf/Banners/Domino/$file/
DominoSquareLogo.gif";
function showLogo(logoName)
{
 logo = eval(logoName+".src");
 document.images["Banner"].src=logo
}

The JavaScript will be inside the header of the Web page, so that all objects
of this JavaScript are allocated before other elements on the Web page.

– logoIBM and logoLotus are the definitions of two images.

– logoIBM.src and logoLotus.src store the URL of the images. You will
need to replace their values with the URL of your sample images.

– showLogo() is a function that replaces the content of the “Banner” image
with that of one of the two defined above; the selection of the image
depends on the value of logoName, which is a parameter (a string)
passed to the function.

2. Add the following HTML code to the form, using pass-thru HTML style:

<a href=http://www.ibm.com
 onMouseOver="showLogo('logoIBM'); return true;"
 onMouseOut="showLogo('logoLotus')">
<IMG NAME="Banner" SRC="/ChilePepperSite.nsf/Banners/Entrevision/$file/

Note: This only works in a browser, as Domino does not support the
onMouseOver or onMouseOut events on the Notes client.
 Chapter 14. Programming for Domino 6 635

Entrevision.gif">

Explanation:
� onMouseOver is the event that triggers the function call

showLogo(‘logoIBM’).

� onMouseOut is the event that triggers the function call
showLogo(‘logoLotus’).

� “Banner” is the name of the image that is replaced each time the mouse
enters or exits its area.

Example 5: updating frames using JavaScript
This short sample can be used when you need to change the content of two
frames at the same time.

1. Add the following Javascript to the JS Header of the form, or create a
Javascript library for it, and include it in the JS Header:

function changeFramesContent(URL1,URL2)
{
 top.Frame1.location=URL1;
 top.Frame2.location=URL2;
}

We have named the two frames Frame1 and Frame2.

2. Create a new button to update the frames, and in the onClick event add the
following:

changeFramesContent(URL1,URL2);

14.6 LiveConnect - JavaScript access to Domino
classes

The LiveConnect technology allows JavaScript to initiate applet communication
within browsers, and is also implemented in the Notes client.

LiveConnect is a proprietary Netscape Technology (since 3.0), and is also
implemented within Internet Explorer. It allows applet-script (IE - partial support),
script-applet (IE - partial support) and applet-applet communication, but this is
not fully supported in the two browser environments.
636 Domino Designer 6: A Developer’s Handbook

14.6.1 Accessing an applet from JavaScript
Consider the following applet:

<APPLET CODE="Hello.class" NAME="Hi" WIDTH=150 HEIGHT=25> </APPLET>

JavaScript can access an applet via the applet name or applets array in the
JavaScript document object:

� document.applets.Hi

� document.applets[0] or document.applets[“Hi”]

On accessing the applet, JavaScript can also access the Java public
methods/properties of the applet:

� document.applets.Hi.methodname

� document.applets.Hi.variable

Obvious advantages include repainting applets with new data at runtime, without
roundtrips to the server via submits.

14.6.2 Accessing Java/CORBA applets via LiveConnect
Consider the current Notes Client Programmability model. The Domino Object
Model (DOM) is accessed by LotusScript in the event handlers. On the Web, the
scripting language is JavaScript, which has no interface to the Domino Object
Model (DOM). Java has an interface to the DOM, but the API’s are remote. This
is where you can utilize a CORBA applet.

A CORBA-enabled applet can access a remote Domino Session object and, in
combination with LiveConnect, make this property available to JavaScript via a
public property or method. An HTML page can now have a persistent session
with the Domino server via JavaScript and utilize the DOM, without the need to
submit the page to the server for each transaction.

Example
The following example illustrates how LiveConnect can be used in the Notes
client. It has been taken from the Lotus Domino Toolkit for Java/CORBA 2.0.

The Rich Text field on the document contains a 1-pixel square embedded applet.
The applet code is minimal:

import lotus.domino.*;
public class PinpointApplet extends lotus.domino.AppletBase {

public void notesAppletInit()
{

setLayout(null);
 Chapter 14. Programming for Domino 6 637

setSize(1,1);
}

}

The important thing is that the applet extends the AppletBase class. This class
implements the method AppletBase.openSession(), which we will use to get a
Domino session object.

The Rich Text field on the document also has a button that, when clicked, locates
the applet, passes the openSession() method to it and then accesses the
Domino Object Model through JavaScript. You can see all the JavaScript code for
that button.

// Sample JavaScript code accessing back-end data via Java
// Retrieves the first or second database in the DBDirectory
{

// Once session is obtained, we can utilize any class
 // in the Domino Object Model. Can also

// use document.applets[0].openSession(user, pwd);
var s = document.applets[0].openSession();
if (s == null) {
window.defaultStatus = "Unable to connect to server";
}
// Update a field on the form
document.forms[0].Platform.value = s.getPlatform();
var dir = s.getDbDirectory("");
// Use introspection to retrieve static constants

 // such as lotus.domino.DbDirectory.DATABASE
var dirclass = dir.getClass();
var dbcode = dirclass.getField("DATABASE").getInt(null);
var db = dir.getFirstDatabase(dbcode);
// For fun, switch between first and second DB each time

 // button is clicked
if (document.forms[0].DatabaseTitle.value == db.getTitle()) {

db = dir.getNextDatabase();
}
db.open();
document.forms[0].DatabaseTitle.value = db.getTitle();
var server = db.getServer();
if (server == "") server = "Local";
document.forms[0].DatabasePath.value = db.getFilePath() + " on " +

server
}

Once JavaScript has retrieved the session object reference, it can utilize the full
Domino Object Model in the JavaScript code.

In the preceding code, the JavaScript code uses the Session object to access the
following data, which is placed into the respective fields on the form.
638 Domino Designer 6: A Developer’s Handbook

� Platform of the Domino server

� Title of the first or second database on the Domino Server

� File path of the first or second database on the Domino Server

From a performance perspective, the applet initially takes a small amount of time
to load from the server. Once it is loaded and initialized, however, access to the
remote session object is fast.

The applet and the button with the JavaScript code can be placed in the form
design, so that every document created automatically contains them. The applet
can be in a hidden paragraph, as users do not need to see it.

It is advisable to place complex code into a public method within the applet to
correctly handle Java Exception conditions.

This method could also be used for hiding JavaScript implementation code as
Java inside an applet.

If the form had many applets, the one session reference could be shared among
the applets via the InfoBus technology.

14.7 The API for Domino and Notes

The C and C++ API for Domino and Notes allows you to write a program that
processes data in a Domino database, or moves data in and out of Domino. The
API accesses the Domino database layer, much as the Domino Object Model
itself accesses it. You can also use the API to access the server software, the
Tools menu in the workstation software, and the File Types list in the File Export
dialog box.

Note: Because Domino 6 supports a CORBA/IIOP architecture, you are also
able to run API programs through the Web. In this case, the client uses the server
APIs. For more information about CORBA/IIOP architecture, refer to the Lotus
Domino Release 5.0: A Developer's Handbook, SG24-5331.

You can write an API program to do the following:

� Extract external data, reformat it, and store it in the Domino database.

For example, you can retrieve information from SQL records.

� Extract Domino data, reformat it, and store it in an external application.

Note: Remote access via CORBA must be enabled on the server by an
administrator in order to use Domino data in applets.
 Chapter 14. Programming for Domino 6 639

For example, you can retrieve Notes workflow status data into a word
processor or executive information management (EIS) system.

� Add commands to the File - Tools menu.

For example, when a user chooses your new command, Domino can launch
your program and pass user context information to it, such as which view is
active, whether the user is editing a document, and which field contains the
cursor. Your program can compute new values and enter them into Domino
fields.

� Implement server add-in tasks.

For example, you can implement a task that takes conditional actions beyond
Notes background macro capabilities. A server add-in task functions as a
daemon. It has no user interface and runs in the background like other server
tasks.

� Create a custom file export format.

For example, when a user selects your new file type in the Notes File Export
dialog box, Domino launches your program and exports data to it.

For more information about the API products, refer to the documentation
found at Lotus Developer Domain, Documentation Library pages:

http://www.lotus.com/ldd/doc

14.8 XML
Notes 6 contains programming tools to let you generate and parse any XML
data. The classes that were previously available by downloading the Lotus XML
Toolkit, have been added to the main product and are now a standard part of
LotusScript (and Java). Chapter 16, “XML” on page 743, discusses the XML
capabilities in detail.

Briefly, the LotusScript classes include:

� XML processors NotesDOMParser and NotesSAXParser, which implement
the two standard models for processing any XML data.

� Helper class NotesStream, which represents an input to or output from an
XML processor (among other uses).

In addition, there are classes to support DXL, the Domino-specific XML
Document Type Definition. DXL is used to represent and process information
about Notes documents, databases and design elements. These classes include
the following:

� NotesXSLTransformer transforms DXL through XSLT.
640 Domino Designer 6: A Developer’s Handbook

� NotesDXLExporter and NotesDXLImporter convert Domino data to and from
DXL.

� NotesNoteCollection lets you select parts of a Notes database to pass to a
NotesDXLExporter.

Versions of all of these classes are also available in Java.

14.9 Sametime connectivity
This section briefly covers basic information about Sametime and Sametime
connectivity. For more information, refer to the IBM Redbook Lotus Sametime
Application Development Guide, SG24-5651, and to the other Sametime-related
redbooks listed in “Related publications” on page 799.

14.9.1 What is Sametime
Lotus Sametime is the product that delivers a network-based, real-time
communication and collaboration solution to today's global business. A pivotal
component to achieve the Lotus ideal of collaboration, Sametime establishes a
virtual office environment where workers can easily locate and communicate with
colleagues, customers, suppliers, and others.

14.9.2 What can Sametime do
Sametime meets the need for workers to connect and communicate instantly on
issues that are critical to business success. Sametime fulfills this need by
establishing an online community and providing these key user capabilities:

� Awareness
� Conversation
� Object sharing

14.9.3 Power of Sametime
The unique power of Sametime is its ability to move between asynchronous and
real-time communications while adding value to the user's experience. Let's look
at a business scenario where Sametime demonstrates this power.

Suppose you receive an urgent e-mail from a customer with a serious software
support issue. You must provide an immediate and accurate solution to this issue
or lose the customer account. Using e-mail, you could exchange endless
messages with an internal expert seeking answers to the issue. The downtime
 Chapter 14. Programming for Domino 6 641

between messages could grow into hours, leaving the customer even more
dissatisfied.

Using Sametime installed in a Domino environment, you could get much faster
results than with e-mail. First, with awareness you can quickly locate an internal
expert knowledgeable about the customer issue and determine if that person is
available for discussion. Seeing that the customer available, you send an instant
message asking him a few direct questions.

During the chat session, you decide to invite another internal expert to help with
the issue. This conference chat leads to a discussion about a document stored in
the Customer Service database.

Using Sametime's instant meeting feature, you access that Notes database,
open the document, and share it with the experts online. In real-time, the group
reviews the document. Based on the online review, necessary document
changes are made.

You save the document and repost it to the Customer Service database. In
minutes you have created a document that accurately addresses the customer's
specific needs. You can now forward that document to the customer or discuss it
in a phone conversation.

14.9.4 Sametime-enabling Domino applications
Domino applications can be enabled for Sametime, thus taking the power and
strength of what Sametime delivers into the application itself. This can be to
support a chat service and instant messaging within an application, or you might
enable the application to find out if a specific user is online.

Another use would be to check who is within a Domino application at the same
time as you are, and to be able to contact that person. This means that you can
have a team database where you and others might be in the same section, for
example, on the same Web page. Sametime lets you “see” each other as online
there, and you can send an instant message right from that indicator, and start a
meeting session, if desired.

To enable your Domino Web applications for Sametime, refer to the IBM
Redbooks Lotus Sametime Application Development Guide, SG24-5651 and
Working with the Sametime Client Toolkits, SG24-6666.

The Sametime Links 3.0 Toolkit is available from Lotus Web site:

http://www-12.lotus.com/ldd/doc/uafiles.nsf/docs/ST30/$File/stlinkstk.pdf
642 Domino Designer 6: A Developer’s Handbook

Example - Sametime-enabled application
The following example builds on the Sametime 3.0 server and the Sametime
Links 3.0 Toolkit functionality. It will create a very simple Web page with links to
persons online on a Sametime 3.0 server. By clicking the names of these people,
you are available to chat directly to them, using the Web-based chat client.

Sametime-enabling a Web application with the new Sametime Links 3.0 Toolkit is
easy, and well documented in the Toolkit.

Preparing the page for the addition of Sametime links
1. Include the necessary files by adding the following HTML code to the Head

HTML section:

<LINK REL=STYLESHEET HREF="codebase/stlinks.css" TYPE="text/css">
<SCRIPT src="codebase/stlinks.js"></SCRIPT>
<SCRIPT>
setSTLinksURL("codebase");
</SCRIPT>

The codebase is the URL of the directory where the Sametime Links runtime
package is installed (http://<sametimeserver>/sametime/stlinks, where
<sametimeserver> is your Sametime server host name).

2. Add the code that puts the hidden Sametime Links Java™ applet on the page.
This code can be put anywhere in the HTML code for your page because the
applet itself is placed on a hidden, zero-size HTML layer.

<SCRIPT>
writeSTLinksApplet (loginName, key, isByToken);
</SCRIPT>

Note the following in the writeSTLinksApplet call:

� The loginName argument is the login name of the user.

� The key argument is the password or the token. Sametime Links provides
three methods for logging in to a Sametime community: log in by password;
log in as anonymous; log in by token.

� The isByToken argument is true if you use a token to authenticate, and false if
you use a password. The default is false.

Adding the Sametime link
Once you have prepared the page for adding Sametime Links, you add a
Sametime link anywhere in the HTML text by typing the following:

<script>writeSametimeLink(userName, displayName, bResolve,
options)</script>

In the writeSametimeLink call:
 Chapter 14. Programming for Domino 6 643

� The userName argument is the unique user name. To ensure uniqueness,
use the canonical name, or the distinguished name if you are using an LDAP
directory.

Note: The Sametime server 2.5 cannot resolve distinguished names.
Therefore, if you are using Sametime server 2.5 with LDAP, use the user’s
common name.

� The displayName argument is the display name of the user. This name is
displayed as the text of the link.

� The bResolve argument is true if the Sametime server has to resolve the user
name. False indicates that the user name is already resolved.

� The options argument is a string of semicolon-delimited display options. Each
element in the list has the format “option:value.” The options allow you to
change the rendering and the behavior of the Sametime link. For example, by
specifying “text:yes;icon:no” you create a Sametime link without a status icon.
For more information of writeSametimeLink, check out the Sametime 3.0
Toolkit.

Sample page
<html>
<head>
<LINK REL=STYLESHEET HREF="http://sametimeserver/sametime/stlinks/stlinks.css"
TYPE="text/css">
<SCRIPT src="http://sametimeserver/sametime/stlinks/stlinks.js"></SCRIPT>
<SCRIPT>setSTLinksURL("http://sametimeserver/sametime/stlinks", "no");</SCRIPT>
</head>

<body bgcolor=#CCD2D0>

<script>
writeSTLinksApplet("","", false);

</script>

<table border=0 width=770>
<tr><td><span style="font-family:arial; font-size:12pt;
font-weight:bold;color:#123456;">Click on a Redbook teammember you want to talk
to:

<script>

writeSametimeLink("CN=Rune Carlsen/O=ITSO", "Rune Carlsen",false);
</script>

<script>

writeSametimeLink("CN=Tommi Tulisalo/O=ITSO", "Tommi Tulisalo",false);
</script>
644 Domino Designer 6: A Developer’s Handbook

</td></tr>
<tr style="font-family:arial;font-size:8pt"><td align=left><img
src=”SametimeOnline.gif” border=0> Available <img
src=”SametimeBusy.gif” border=0> Busy <img
src="SametimeDoNotDisturb.gif" border=0> Do not
disturb <img src="SametimeOffline.gif"
border=0> Offline </td></tr>

</table>
</body>
</html>

With a Sametime server available and correctly installed, configured, and ready
for Web-based communication, this example would look like Figure 14-27 on
page 645.

Figure 14-27 Sametime-enabled Web application

Clicking a person’s name that is online (indicated by an “Available” icon) will start
a chat communication directly with that person, as shown in Figure 14-28 on
page 646.
 Chapter 14. Programming for Domino 6 645

Figure 14-28 Sametime chat on Web

This example only describes a basic example of live chat with a predefined set of
users, hardcoded in the HTML file. This can be more dynamic, depending on
how you prefer to program it.

There is also a set of other things to do on Web, such “changing status links”,
“place-based awareness”, “place counter” and other useful features. Refer to the
Sametime 3.0 Toolkit and the Sametime Redbooks for more detailed information.

14.10 Integration with Microsoft technologies
This section provides information and a brief overview of Microsoft integration
using the Component Object Modem (COM), and gives both simple and
advanced code examples on how to access the Domino objects using COM.
646 Domino Designer 6: A Developer’s Handbook

Developers have had access to the Domino Object Model (DOM) through OLE
Automation since Notes R4.0. There are two main reasons why COM support is
needed, as well:

� OLE Automation requires Notes to be running.

You cannot use Domino services through OLE Automation without having the
Notes client launched in the foreground.

� OLE Automation only allows late binding.

By using COM, you can choose between early and late binding. Early binding
gives better performance and stability during application execution.

On the other hand, if you want to use the Notes client to handle the user
interface or parts of it in your application, you must use OLE Automation. You
cannot control the Notes user interface via COM.

For more information about COM and Domino, refer to the IBM Redbook, COM
Together - with Domino, SG24-5670.

14.10.1 What is COM
COM, or the Component Object Model, is an open software component
specification developed by Microsoft. It allows objects to expose their
functionality to other applications. COM defines a specification for developing
reusable binary components across multiple software languages and platforms.

COM components can be written and called by any language that can call
functions through pointers, including C, C++, Delphi, and Basic, just to name a
few. Because of this flexibility, COM components can be built by different
software vendors and incorporated in endless combinations to create
applications and systems.

Tip: The difference between early binding and late binding is like the
difference between speed and flexibility; note the following:

� In early (compile-time) binding, the object definitions are available. They
can be typed correctly and syntax checking can be performed.

� In late (run-time) binding, objects are generic during development. There is
an overhead when casting an object to its correct type during run time, and
there is also the danger of syntax errors.

Note: The initial 6.0 release, unlike Notes 5.x, lacks COM server capability.
This will be restored in a later release. Notes can still act as an COM client.
 Chapter 14. Programming for Domino 6 647

COM is one of the basic building blocks in newer Windows technology, including
OLE services. You could say that OLE is a standard for one software calling
another software.

The COM specification provides:

� Rules for component-to-component interaction
� A mechanism for publishing available functions to other components
� Automatic use tracking to allow components to unload themselves when no

longer needed
� Efficient memory usage
� Transparent versioning

When it comes to COM components, they also offer an interface to applications.
The mechanism to make this interface available to other software objects is
covered by the COM standard. It is up to the COM component developer, though,
to decide what the actual interface should look like.

The decision of what properties and services (methods) to make available from
the outside is an important one. Applications using the COM component will
depend on having these methods available throughout the components’ lifetime.

The developer can change the internal mechanisms of a COM component, but
the applications using that COM component should never need to know. They
should continue working exactly as they always have because the interface to the
component did not change.

New interfaces can be added to the component, so long as the old ones still
continue to function in the same manner. This provides an upgrade path without
causing obsolescence to those components relying on the older interface. If a
developer wanted to take advantage of the new interface, they could do so, but
they would not have to do in order for their applications to continue functioning.

This is a very simple overview of COM. There are many other aspects and
important things to be aware of, which this section will not cover. For additional
information, refer to Lotus Noted/Domino Help databases and to:

http://www.microsoft.com/com

14.10.2 COM support in Domino
In order to use the COM classes for Domino with Microsoft Office or any other
COM-supported application, you must have at least one of the following installed
on the machine where the code will be running:

� Domino Designer 5.0.2b or later
� Domino Server 5.0.2b or later
648 Domino Designer 6: A Developer’s Handbook

� Notes Client 5.0.2b or later

For Microsoft Office, you will need Microsoft Office 97 or later. During
development, you will need to enable the reference to the Domino Objects library
in the Visual Basic Editor.

Domino Object Model
The Domino Object Model gives you as a developer access to a wide range of
services (such as object store, directory, security, replication, messaging,
workflow, automation through agents, and more) in a consistent way.

Through a wide range of Domino objects, methods and properties, you can use
all those services from COM-enabled languages like Visual Basic, VB for
applications, VBScript, C++, and LotusScript, as well as from Java™ and other
languages that can use Common Object Request Broker Architecture/Internet
Inter-ORB Protocol (CORBA/IIOP).

Note: If you have upgraded Notes or Domino from an earlier release using the
incremental upgrade installer, you may have to enable the COM support
manually.

Do this by selecting Run on the Windows Start menu and then executing the
following command (substituting c:\lotus\notes with the path where your Notes
Domino files are installed):

regsvr32 c:\lotus\notes\nlsxbe.dll

Tip: “COM support” means that anyone with basic programming skills, such
as from using BASIC, C, or C++, could write a program that accesses Domino
objects.

Note: CORBA is an architecture and specification for creating, distributing,
and managing distributed program objects in a network. IIOP (or Internet
Inter-ORB Protocol) is a protocol that makes it possible for distributed
programs written in different programming languages to communicate over the
Internet.

IIOP is a critical part of a strategic industry standard, CORBA. Using
CORBA's IIOP and related protocols, a company can write programs that will
be able to communicate with their own or other company's existing or future
programs wherever they are located and without having to understand
anything about the program other than its service and a name.
 Chapter 14. Programming for Domino 6 649

The Lotus Domino object COM components can be thought of as black box
access to Domino, as illustrated in Figure 14-29.

Figure 14-29 Accessing Domino through Domino objects using COM

The actual mechanism for accessing Domino is hidden from the application
developer, who relies fully on the interface provided by Lotus. Knowing this
interface will be your key to success in utilizing the features of Domino, such as
creating workflow applications and creating document archives with integrated
security, as well as all the other functions that Domino is famous for providing.

Developers familiar with the Domino Object Model used when programming
LotusScript against Domino will recognize most of the interface classes in the
COM interface.

Accessing Domino with COM
You can access Domino using any COM-enabled application.

For the following examples, we use Microsoft software (such as Microsoft
Internet Explorer, Excel and Word) to indicate how you can integrate your
existing Microsoft-based applications with Lotus Notes/Domino using COM.

Note: A “COM-enabled application”, in relation to Domino, is an application
that accesses the Domino Object Model using the COM interface.
650 Domino Designer 6: A Developer’s Handbook

Accessing Domino with Microsoft Internet Explorer using COM
The following example illustrates how we can use VBScript to access Domino via
the COM interface, using Microsoft Internet Explorer:

<HTML>
<HEAD>
<TITLE>Access Domino via COM using IE</TITLE>
<SCRIPT LANGUAGE="VBScript">
Sub test

Dim session
Set session = CreateObject("Lotus.NotesSession")
session.Initialize
document.write("Your current session name in Lotus Notes is

")
document.write(session.username)

End Sub
</SCRIPT>
</HEAD>
<BODY onLoad="test">
</BODY>
</HTML>

When running this example, and depending on your settings in Microsoft Internet
Explorer, you may see the dialog box shown in Figure 14-30 appear.

Figure 14-30 Internet Explorer warning

If this dialog box appears, click Yes; this example code will do no harm. (This
warning most likely appears as a result of security settings in your Microsoft
Internet Explorer; from the application, you are trying to connect and access
other applications, in this case, through a COM interface.)

You should now see a screen similar to Figure 14-31 on page 652.
 Chapter 14. Programming for Domino 6 651

Figure 14-31 Information from Domino, inside Internet Explorer, using COM

Accessing Domino from Microsoft Word using COM
You can also develop Domino applications using Visual Basic for Applications
and Microsoft’s Component Object Model (COM) interface. To access Domino
from Microsoft Word, there are a few steps you need to complete before starting
to access Domino from MS Word using the COM interface:

1. Launch Microsoft Word, Excel or Access.

2. After opening a document, workbook, or database, choose Tools -> Macros
-> Visual Basic Editor (Alt + F11).

3. Choose Tools -> References. You will see a dialog box, as shown in
Figure 14-32 on page 653.

Note: If you are not logged in to Notes at the time, you will be prompted to
type your Notes password. Why? Because in order for a COM application to
access Domino objects, you need to authenticate. The COM application uses
the local installation of Notes on the client it is running, and then the current
user.id file, to authenticate.
652 Domino Designer 6: A Developer’s Handbook

Figure 14-32 Enabling Lotus Domino Objects

4. Scroll down the selections and choose Lotus Domino Objects (if it has not
been used recently, the Lotus Domino Objects library will be listed
alphabetically).

5. Click OK.

You will now be able to access the Domino objects from within the application,
while you are writing your Domino application.

Accessing a Domino database from Microsoft Word using COM

In the following example, we create a button inside Microsoft Word, accessing the
Domino Directory, and insert information from this Directory inside the current
document in Word.

We will need a place to display the names we retrieve from our directory or
address book, so we will create a form that we can display as a dialog box.

The user can then make a selection from the form, which we will use to retrieve
the associated data from Domino and place it in the Word document.

1. Enable the design mode in the VB Editor by clicking the Design Mode icon on
the toolbar; see Figure 14-33 on page 654.

Tip: Deselect any objects (other than the defaults) that you do not need, and
make Lotus Domino Objects high in the priority list for better performance.
(There is also a reference called “Lotus Notes Automation Classes”; you will
not be needing it.)
 Chapter 14. Programming for Domino 6 653

Figure 14-33 Buttons to click on the vb editor

2. Insert a new user form by clicking the Insert User Form button on the toolbar.

3. Your screen should now look similar to Figure 14-34.

Figure 14-34 User form added

4. In the properties box on the left side of your screen, change the caption to
read: Domino Name Lookup.

5. Click back on the form itself to make the form toolbox reappear, then select
the label tool (second from the left, top row).

6. Click your form with the label tool and drag to create a label where we will
place instructions for the dialog box.

7. Click inside the label and edit the text to read:

Select a name from the list below and click OK:
654 Domino Designer 6: A Developer’s Handbook

8. Click anywhere outside the label box; your screen should now look like
Figure 14-35.

Figure 14-35 User form with captions set

9. To add a list box to your form, click the ListBox tool (top right button on the
toolbox).

10.Click your form below the label text and drag to create the list box (leave room
for OK and Cancel buttons below the list box).

11.Using the CommandButton tool (directly below the ListBox tool), create two
side-by-side buttons for your OK and Cancel buttons.

12.Select the first button and change the Caption in the Properties box to OK and
make sure the Default property is True.

13.Select the second button and in the Properties box, then change the Cancel
property to True and change the Caption to Cancel.

14.Your dialog box should now look similar to Figure 14-36 on page 656.
 Chapter 14. Programming for Domino 6 655

Figure 14-36 Listbox, lables and buttons added

If you have not already done so, save your work at this point.

Adding the code that does the database lookup
Now to create the actual code that powers the dialog box that was built—this is
where to actually get started using the Domino COM objects. Follow these steps:

1. From the Microsoft Visual Basic editor, choose Insert -> Module from the
menu bar. A new code module text box will appear.

Since you will be interacting with your form in another part of our project, you
will need a public variable to store the user’s selection from the dialog box.

2. You will get the user’s selection from the ListIndex property of our ListBox
object, so declare a variable in the General Declarations area of the code
module (which is the default section of the code module now displayed):

Public IntPerson as Integer

3. Insert the first sub procedure (sub).

There are several ways to do this. If you are a LotusScript programmer, you
might be accustomed to just typing Sub subname to start your sub. You can do
the same thing here, or you can choose Insert -> Procedure from the menu
and fill out the properties box.
656 Domino Designer 6: A Developer’s Handbook

Whichever method you choose is fine, in this case. Call your procedure
PopulateList so it will match our example, then press OK if you used the
dialog box, or simply press Enter if you typed it in the code module text box.

4. Declare the variables for this sub, as follows:

Dim DomSession As New NotesSession
Dim DomDir As NotesDatabase
Dim DomContacts As NotesView
Dim DomDoc As NotesDocument
Dim StrName As String
Dim doc As Document ’this will be our reference to the’Word document
Dim myRange As Range
Dim DomSession As NotesSession
Set DomSession = CreateObject(“Lotus.NotesSession”)

Access to Domino objects must always start with the creation of a NotesSession
as shown above.

DomDir will hold your Name and Address Book. DomContacts will hold the
reference to the People view you will be using for populating your list box and
document. DomDoc will be the reference to the Domino document (record) we
are currently accessing.

StrName is a regular VB String, where you will store the composite name that
you piece together from the FirstName, MiddleInitial, and LastName fields in our
Domino document. The variable doc will be used to reference the current Word
document. The variable myRange will represent the current insertion range in
your Word document.

1. To initialize the Domino (Notes) Session:

DomSession.Initialize

2. A session to Domino is now set up, and the next thing is to access the objects
of Domino which you want to access, as follows:

Set DomDir = DomSession.GetDatabase(““, “redbook\pernames.nsf”)
Set DomContacts = DomDir.GetView(“Contacts”)
Set DomDoc = DomContacts.GetFirstDocument
Set doc = ActiveDocument

At this point, you have access and a handle on the first document in the
“Contacts” view.

3. Add and populate each document into the list box by using a While loop:

While Not (DomDoc Is Nothing)
StrName = DomDoc.GetItemValue(“LastName”)(0) & “, ” & _
DomDoc.GetItemValue(“FirstName”)(0) & “ ” & _
DomDoc.GetItemValue(“MiddleInitial”)(0)
UserForm1.ListBox1.AddItem (StrName)
 Chapter 14. Programming for Domino 6 657

Set DomDoc = DomContacts.GetNextDocument(DomDoc)
Wend

You are only retrieving certain items of the domino objects and document,
which is the FirstName, LastName and MiddleInitial, and adding these to the
list box using AddItem.

4. Once the list box has been populated, you can show it to users so they can
make their selection:

UserForm1.Show

5. Once the user has responded to the dialog box, you will be returned here and
will continue execution by first checking to see if the user canceled the dialog
box. You can do this by inspecting IntPerson to see if it has been set to the
value of -1 by the Cancel (CommandButton2) click event. If the user did
Cancel, you can exit the sub:

If IntPerson = -1 Then ’User pressed Cancel (CommandButton2)
Exit Sub

End If

6. If you get past the Cancel check, you can retrieve the document
corresponding to the name the user selected from the list box, which
populates IntPerson with the number of the selection.

Using that value as an index, you can use the GetNthDocument method of the
NotesView, DomContacts, to retrieve a reference to the document:

Set DomDoc = DomContacts.GetNthDocument(IntPerson)

7. Once you have the reference, you can again use the GetItemValue method of
DomDoc to get all the components of the full name, and store the formatted
result in StrName for later inclusion in your document. Since not all records
will include a middle initial, check to see if there is one before including it:

StrName = DomDoc.GetItemValue(“FirstName”)(0) & “ ”
If DomDoc.GetItemValue(“MiddleInitial”)(0) <> “” Then
StrName = StrName & DomDoc.GetItemValue(“MiddleInitial”)(0)& “. ”
End If
StrName = StrName & DomDoc.GetItemValue(“LastName”)(0)

8. Now you are ready to start inserting information into your document. Word
allows you to set a “range” for insertion using x,y coordinates which
correspond to the row and character position where you want to start your
range. The coordinates 0,0 correspond with the first position in the document.

Set myRange = ActiveDocument.Range(0, 0)
With myRange

.InsertAfter (StrName & vbCr)

.InsertAfter (DomDoc.GetItemValue(“StreetAddress”)(0) & vbCr)

.InsertAfter (DomDoc.GetItemValue(“City”)(0) & “, ”)

.InsertAfter (DomDoc.GetItemValue(“State”)(0) & “ ”)
658 Domino Designer 6: A Developer’s Handbook

.InsertAfter (DomDoc.GetItemValue(“ZIP”)(0) & vbCr & vbCr)

.InsertAfter (“Dear ” & StrName & “:” & vbCr)

.InsertAfter (vbCr & vbCr)
End With
End Sub

Adding code to the OK and Cancel command buttons
The easiest way to add code to the command buttons is to switch back to the
form itself.

1. Use the Window menu in the VB Editor and switch back to the window that
contains UserForm1 (UserForm). Double-click the OK button; this will position
you in the UserForm1 Code module in the click event for the OK command
button. Add the following code:

If ListBox1.ListIndex = -1 Then
MsgBox (“You didn’t make a selection, please select a name and click OK to
proceed, or Cancel to quit.”)
Else
IntPerson = ListBox1.ListIndex + 1
Unload UserForm1
End If

2. Switch back to UserForm1 (UserForm), double-click the Cancel button, and
insert the following code in the click event of that command button:

IntPerson = -1
Unload UserForm1

Setting IntPerson to -1 will be the signal to your calling module that the user
canceled. Again, unload the form here, because it is no longer needed. Now you
just need to add a toolbar and button to give the user a way to easily access your
lookup macro.

Save the document as a Word template
In order to add a toolbar in the next step, you will need to specify a template
where you’ll store the new toolbar. While you could store the toolbar in the default
template Normal.dot, create instead a new template just for the example, using
the following steps:

1. Switch back to the Word document window by selecting it on the Windows
toolbar.

2. From the menu, choose File -> Save As. In the Save As dialog box, scroll
down and choose Document Template (*.dot) from the drop-down list box.

3. Name it Domino Name Lookup.dot.

Add the toolbar
1. Choose Tools -> Customize from the menu and click the Toolbars tab.
 Chapter 14. Programming for Domino 6 659

2. Click New. Name your toolbar Domino Name Lookup. The template should
default to the one you just saved, Domino Name Lookup.dot.

3. Click OK. A small toolbar will appear on your screen.

4. To add your macro to it, click the Commands tab on the Customize dialog
box.

5. Select Macros from the Categories list box.

6. Drag the Project1.Module1.PopulateList Macro to the toolbar on the right and
drop it.

7. Right-click the toolbar text and choose Name. Name it: Insert Name from
Domino.

8. Close the Customize dialog box, save your form, and you’re done!

Try your code
Now you can choose File -> New, choose your Domino Name Lookup template,
and you’re ready to use your new macro to look up Domino names and
addresses to add to your document. Figure 14-37 shows what a new document
based on the template should look like.

Figure 14-37 New document based on the new template
660 Domino Designer 6: A Developer’s Handbook

Click the Insert Name from Domino button and your screen should display a
dialog box showing content from a Domino database (you might be prompted for
your Notes password first).

After selecting a name, your document should look similar to Figure 14-38.

Figure 14-38 Information from Domino inserted into MS Word document

Accessing Domino with Microsoft Excel using COM
You can just as easily integrate and access Domino objects by using Microsoft
Excel.

Note: Depending on how you saved your new toolbar and template, the new
button might be visible as a floating window as well. Drag this to your toolbar
and make it part of the other icons, if desired.

Important: Remember to access Domino objects using VBA, or Visual Basic
for Applications, you need to enable the “Lotus Domino Objects” for your
project (found in the reference settings). This is described in “Accessing
Domino from Microsoft Word using COM” on page 652.
 Chapter 14. Programming for Domino 6 661

Accessing Domino from Excel is done using buttons in a spreadsheet or from
icons in the toolbar. In this section, we present several examples of how you can
access Domino and integrate the two applications.

All of the following examples are based on running macros initiated from a button
in a spreadsheet. We create macros in MS Excel in a similar way to creating
them in MS Word. The examples will mainly show you the code and explain what
the examples will do for the end user.

Getting the current username
Let’s start off rather simple and show how, from Microsoft Excel, you can get the
current username from the logged-in user in Lotus Notes/Domino:

1. Create a new spreadsheet in Excel.

2. Create a button somewhere in your spreadsheet.

3. Add this code to the button:

Sub GetNotesUsername()
Dim session As New NotesSession
Set session = CreateObject("Lotus.NotesSession")
session.Initialize
MsgBox session.UserName

End Sub

Clicking a button in MS Excel with this code should give you something like
Figure 14-39.

Figure 14-39 Accessing Notes from Excel - receiving the current username

Sending an e-mail through Domino from MS Excel
This example, through a button in Microsoft Excel, creates an e-mail to be sent
and created in the current user’s mailfile, with an attachment of the current Excel
spreadsheet, using the COM interface.

Sub SendSheetByMail()
‘ ** First we declare our variables
Dim session As New NotesSession
Dim dbdir As NotesDbDirectory
Dim db As NotesDatabase
Dim doc As NotesDocument
Dim rtitem As NotesRichTextItem
662 Domino Designer 6: A Developer’s Handbook

‘ ** Then we initialize the Notes session and get the
‘ ** database (mailfile) and create a new document in it
session.Initialize ("")
Set dbdir = session.GetDbDirectory("")
Set db = dbdir.OpenMailDatabase
Set doc = db.CreateDocument

‘ ** Then we set the correct values in the
‘ ** sendto and subject field, and create a richtextiten
‘ where our attachment will be added
Call doc.ReplaceItemValue("SendTo", session.UserName)
Call doc.ReplaceItemValue("Subject", "Mail from MS Excel")
Set rtitem = doc.CreateRichTextItem("Body")

‘ ** then we get a handle on the current active spreadsheet
‘ ** by firstsaving it, and adding the name of the file
‘ ** to a variable and then attaching this file to the
‘ ** richtextitem in the maildocument created earlier.
‘ ** Finaly we send the document.
ActiveWorkbook.Save
MyAttachment = ActiveWorkbook.FullName
Call rtitem.EmbedObject(EMBED_ATTACHMENT, "", MyAttachment)
Call doc.Save(True, False)
Call doc.Send(False)
MsgBox "This spreadsheet has been mailed to " & session.CommonUserName
Set s = Nothing

End Sub

Sending an e-mail through Domino with MS Excel content
This example, through a button in Microsoft Excel, creates an e-mail to be sent
and created in the current user’s mailfile, with content from the current
spreadsheet, using the COM interface:

Sub SendEmailWithContent()
Dim session As New NotesSession
Dim dbdir As NotesDbDirectory
Dim db As NotesDatabase
Dim doc As NotesDocument
session.Initialize

Set dbdir = session.GetDbDirectory("")
Set db = dbdir.OpenMailDatabase
Set doc = db.CreateDocument

Note: By setting the session to “nothing”, you free up the memory used to run
this routine.
 Chapter 14. Programming for Domino 6 663

‘ ** Mycell is the cell with the data we want to catch and send
Mycell = Sheet1.Cells(14, 5)
Status = "Data from spreadsheet as of: " & Date & " " & Time & "

Content is $" & Mycell & " ."
Call doc.ReplaceItemValue("SendTo", session.UserName)
Call doc.ReplaceItemValue("Subject", "Excel message")
Call doc.ReplaceItemValue("Body", Status)
Call doc.Save(True, False)
Call doc.Send(False)
‘ ** the following line just selects a cell
Range("E7").Select
‘ ** the following line adds todays date into this cell
ActiveCell.FormulaR1C1 = Date
MsgBox "A document has been created and sent: " & Date & " " & Time &

Chr(10) & "containing the value in Cell E14 [" & Mycell & "]"
‘ ** this line select the cell with the date we earlier added
Range("E7").Select
‘ ** and clears the content of the cell
Selection.ClearContents
Set session = Nothing

End Sub

Accessing MS applications from Notes/Domino using COM
You can access any COM-enabled application using Lotus Notes/Domino. For
the following examples, we use Microsoft Excel to indicate how you can integrate
your existing Lotus Notes/Domino applications using COM.

Creating a Microsoft Excel spreadsheet with Domino data
This example creates a Microsoft Excel spreadsheet with content and data from
the current notes document. It also creates a chart based on the data
transferred. This example can be included as part of an action on a form, with the
content that should be produced in Excel:

Sub Click(Source As Button)
On Error ErrOLECantCreate Goto errh
On Error 207 Goto errh

Dim xlApp As Variant ' Declare variable to hold the reference.
Dim ButtonHide As String
Dim workspace As New NotesUIWorkspace
Dim uidoc As NotesUIDocument
Set uidoc = workspace.CurrentDocument

‘ ** here we create a object for Excel - mind that this might be
‘ ** different for different versions of Excel.
Set xlApp = CreateObject("excel.application")
xlApp.Workbooks.Add
xlApp.Visible = True
664 Domino Designer 6: A Developer’s Handbook

‘ ** In the following loop, we add text to excel, from the current
‘ ** NotesUIDocument with the content of the Keyword and Count fields
For i = 2 To 23

xlApp.Range("A" & i).Select
xlApp.ActiveCell.FormulaR1C1 = uidoc.FieldGetText("Keyword" & (i-1)

)
xlApp.Range("B" & i).Select
xlApp.ActiveCell.FormulaR1C1 = uidoc.FieldGetText("Count" & (i-1))

Next

‘ ** These next lines, will based on the data just added to the cells,
‘ ** create a chart and set the location, axis labels and shape
‘ ** of the chart.

xlApp.Range("A2:B23").Select
Call xlApp.Selection.Sort(xlApp.Range("B2"), 2)

xlApp.Charts.Add
xlApp.ActiveChart.ChartType = 51 'xlColumnClustered
xlApp.ActiveChart.SetSourceData xlApp.Sheets("Sheet1").Range("A2:B9"), 2
xlApp.ActiveChart.SeriesCollection(1).Name = "=""Notes Chart"""
xlApp.ActiveChart.Location 2, "Sheet1" 'xlLocationAsObject
With xlApp.ActiveChart

.HasTitle = True

.ChartTitle.Characters.Text = uidoc.FieldGetText("title")

.Axes(1,1).HasTitle = True 'xlCategory, xlPrimary

.Axes(1,1).AxisTitle.Characters.Text =
uidoc.FieldGetText("x_axis_label")

.Axes(2,1).HasTitle = True 'xlValue, xlPrimary

.Axes(2,1).AxisTitle.Characters.Text =
uidoc.FieldGetText("y_axis_data")

.ApplyDataLabels 2, True ' xlDataLabelsShowValue

.HasDataTable = False
End With
xlApp.ActiveSheet.Shapes("Chart 1").ScaleHeight 1.5, 0,0
xlApp.ActiveSheet.Shapes("Chart 1").ScaleWidth 1.9, 0,0

Exit Sub
errh:

ButtonHide ="yes"
Resume Next

End Sub
Add the following code in the Terminate event of the code:
Sub Terminate

On Error Resume Next
xlApp.DisplayAlerts = False
xlApp.Quit ' use the Quit method to close
Set xlApp = Nothing ' release the reference.
 Chapter 14. Programming for Domino 6 665

End Sub

This example will create and add data to a spreadsheet in Excel, and create a
chart based on the content of the data in the cells; see Figure 14-40.

Figure 14-40 Excel chart created from Notes/Domino

14.10.3 New features in Domino 6
There are no new enhancements in COM in Domino 6; none of the new classes,
methods, or properties added for LotusScript are available in COM in Domino
version 6.0. Check subsequent maintenance releases of Domino 6 to see if COM
support for the features is added. However, access via OLE Automation is
possible.
666 Domino Designer 6: A Developer’s Handbook

14.11 WebSphere integration
In this section, we provide introductory information about WebSphere integration
with Domino.

14.11.1 What is WebSphere
WebSphere is infrastructure software for dynamic e-business, delivering a
proven, secure, and reliable software portfolio.

Providing comprehensive e-business leadership, WebSphere evolves to meet
the demands of companies faced with challenging business environments such
as the need for increasing operations efficiencies, strengthening customer
loyalty, and integrating disparate systems.

Leading customers toward dynamic e-business means WebSphere provides
answers to these challenging business environments. WebSphere is the only
e-business platform that can provide everything you need to build, deploy and
integrate your e-business, including Foundation & Tools, Reach & User
Experience, Business Integration and Transaction Servers & Tools.

Together, these facets of the WebSphere software platform close the gap
between business strategy and information technology, allowing you to create
and operate a dynamic e-business.

14.11.2 Domino and WebSphere defined
Lotus Domino and IBM WebSphere are premier applications servers that
address different parts of the market. Domino is the leading collaborative
application server. WebSphere is a definitive Java Web Application Server
(WAS), and thus it excels in tasks that require massive scalability, transaction
support, and pure Java development model.

As premier application servers, both platforms support a wide range tasks. They
enable skilled developers to develop powerful and versatile applications. It is
possible, for example, to create rich applications in Domino 6 that rely almost
exclusively on back-end data systems.

Similarly, it is possible in WebSphere to create content-intensive applications
based on dynamic documents. Examples exist of these application types, and in
many cases, the reason for creating them this way is as simple as having the
software or skills in place.

Real opportunity comes from utilizing tools in a way that leverages their
fundamental strengths; it is simply quicker, easier, and more robust to do it that
 Chapter 14. Programming for Domino 6 667

way. When you use most tool combinations, it is often simpler to force the
applications to fit one or the other of the tools exclusively, than to invest energy
and time in the integration work required to make them work in harmony.

Perhaps the best way understand the differences, and leverage the best
capabilities of each, is to examine the strengths of Domino 6 and WebSphere.
Table 14-15 highlights same essential attributes Domino and WebSphere.

Table 14-15 Attributes of Domino and WebSphere

For more information about how to use Domino and WebSphere together, refer to
the IBM Redbook Domino and WebSphere Together, SG24-5955.

Tip: Understanding these fundamental design points answers the basic
question: “When do I use what in an application?

Primary attribute Domino WebSphere

Application type Collaborative Integrating or Trasactive

Content type Document Data

Object type Form, View, Database Servlet, JavaBean, Java
Server Page (JSP),
Enterprise JavaBean
(EJB)

Architecture Integrated object model Java components

Scalability Large Massive

Skills required Moderate High

Development model(s) BASIC, COM/COM+, Java Java (J2EE)

Protocol supported HTTP, IIOP, SMTP,
NNTP,IMAP/POP3,
NRPC, etc.

HTTP, IIOP

Clients supported Notes, Browsers Browsers

Application tools Domino Designer WebSphere Studio,
VisualAge of Java
668 Domino Designer 6: A Developer’s Handbook

14.12 Java
Java is one of the most important and more commonly used programming
language. It is cross-platform and based on the power of networks. Domino
offers you the option to write your applications in Java. Domino 6 and later
supports Java programs written in JDK 1.3 and JSDK 2.0.

None of the new classes, methods, or properties added for LotusScript are
available for Java in Domino 6.0 version. Check subsequent maintenance
releases of Domino 6 to see if Java support for the features is added.

14.12.1 About Java Domino classes
Java Notes classes are created by modifying some of the LotusScript Extension
(LSX) architecture to include a Java “adapter” to compose the new Java Domino
classes. The Java Domino classes have similar functions to some of the
LotusScript Domino back-end objects.

You can use these classes from any Java program, either within the Notes
Designer environment or outside of it, as long as Notes 6 is installed on the
machine. Internally, Java Notes classes execute the same C++ code as the
LotusScript Domino back-end objects, only the language syntax is different.

A Java program is generally made up of a number of files. You must designate
one as the Base Class, which is the starting point for the Java program. For
efficiency, typically for improving applet download speeds, you can bundle all of
the class files and additional resources (for example GIF files) into a single
compressed Java Archive file. The imported Java files can be of the following
types:

� Class - *.class
� Archive - *.jar

For example, when you write a Java agent program, the class you write must
extend the class AgentBase. The code you want to execute when the agent runs
is in the NotesMain() method.

To work with Java in Domino you need the Lotus Domino Toolkit for
Java/CORBA 2.1. To download the toolkit:

http://www.lotus.com/ldd

14.12.2 Java coding conventions
There are conventions you should follow to write a Java program, as described in
the following sections.
 Chapter 14. Programming for Domino 6 669

Classes
The names of the Java classes are similar to the LotusScript classes, except that
they begin with the lotus.domino prefix. Table 14-16 illustrates how some of the
Java Domino classes correspond to LotusScript objects:

Table 14-16 Java classes and corresponding LotusScript objects

Note: The lotus.domino package has the same content as the Release 5
lotus.notes package plus new classes, methods, and other enhancements. The
Release 5 lotus.notes package continues to be supported for backwards
compatibility only. It does not contain the new classes, methods, and other
enhancements.

By convention, start your own classes with the first character as upper case.

Methods
Method names are written with the first character being lower case (for example,
getFirstDocument). Of course, there are exceptions (such as FTSearch).

Properties
To access properties in Java, you also have to use methods. In Java, properties
are implemented through methods, known as accessors, which use the following
naming conventions:

� The name of a method used to get the value of a non-boolean property is the
name of the property prefixed with “get”.

 Java class LotusScript object

lotus.domino.Session NotesSession

lotus.domino.DbDirectory NotesDbDirectory

lotus.domino.Database NotesDatabase

lotus.domino.View NotesView

lotus.domino.Document NotesDocument

lotus.domino.Item NotesItem

lotus.domino.RichTextItem NotesRichTextItem

lotus.domino.Stream NotesStream

lotus.domino.MIMEHeader NotesMIMEHeader

Important: Java is case-sensitive; using the wrong case causes an error.
670 Domino Designer 6: A Developer’s Handbook

� The name of a method used to set the value of a property is the name of the
property prefixed with “set”.

� The name of a method used to get the value of a boolean property is the
name of the property prefixed with “is”.

Parameters and return values
Parameter and return values differ from LotusScript as needed to match the
different data types in Java.

Object Containment Hierarchy
In Java, you cannot create lotus.domino objects using the “new” modifier. All
lotus.domino objects must be created with lotus.domino methods emanating
from the root Session object.

14.12.3 Agents, applets and applications
Java programs can take one of several forms, each with its own characteristics.
The differences between these forms are summarized here.

Java agents complement the familiar LotusScript agents and, to a large degree,
they can be used interchangeably when dealing with back-end operations.
Reasons for choosing Java over LotusScript include existing programmer
knowledge, multi-threading, a more fully featured language, extensibility through
(non-visual) beans, and so on.

Applets allow a Notes developer to create a richer GUI environment for the end
user. Applets will be dynamically downloaded from the server and executed on
the client’s machine, and will work with either Web browsers or Notes clients.

The functions of applets can vary widely, from simple news tickers to complex
database front-ends. Java applets are subject to the Java Sandbox security
model, which prevents unauthorized applets from accessing sensitive machine
resources and from performing certain operations. By default, applets will not
have access to the Notes back-end classes. If this is required, then CORBA is
needed.

Java applications differ from applets in that they are not dynamically loaded from
the server; they are similar to traditional executables in this respect. However,
Java applications typically run outside the Java “Sandbox” security model and
can thus access machine and network resources denied to an applet. A Java
application can be loosely regarded as analogous to a standalone application
which accesses the Notes object model (for example, a C or Visual Basic
program). By default, applets and applications will not have access to the Notes
back-end classes. If this is required, then CORBA is needed.
 Chapter 14. Programming for Domino 6 671

The model for Java agents differs from Java applets in a number of ways:

� Java agents are written explicitly for Domino. Applets are often designed be
served up by any Web servers.

� Java agents behave in the same way as LotusScript agents, but Java applets
behave like Java applets in any Web-authoring environment.

� Java agents only run within a Domino-supplied Java runtime environment,
while Java applets run in both Domino-supplied Java runtimes and
browser-supplied runtimes.

� Java agents are structured in the same way as Java applications (not as
applets). They run within a Domino-supplied context as opposed to applets
whose context is provided in part by the browser and in part by the codebase
parameter specified as part of the applet tag.

For agents, CodeBase and DocBase are not meaningful ways of getting hold
of additional classes. Instead, as with other Java applications, classes and
resources are located within jar files and the class path.

� Java agents can access Domino databases directly by using the Java Domino
classes. Applets can only access Domino objects within Notes using URLs.
(Note that nothing precludes a Java agent from using URLs to access Domino
objects in Notes.)

Agents do not have a UI (and consequently do not use resources as much as
applets). Java Agents run in a relaxed security environment like Java applications
do. You can wrap an application or agent in a SecurityLoader; typically this would
be used in a tightly controlled secure environment when running a semi-trusted
application. This feature is being built into JDK1.2, but can be achieved in 1.1x.

14.12.4 Adding CORBA
Common Object Request Broker Architecture (CORBA) is an open standard
defined by the Object Management Group (OMG). CORBA serves as
middleware for a distributed computing environment whereby clients can invoke
methods on remote APIs residing on other computers. CORBA uses Internet
Inter-ORB Protocol (IIOP) for communication over a TCP/IP network.

CORBA/IIOP support enables Domino developers to create applets that can be
downloaded to the client and can be remotely invoked in Domino services (for
example, to initiate a workflow process).

In addition, CORBA/ IIOP enables information to be processed efficiently over
networks within an open standards-based framework and to distribute work
effectively between clients and servers, ultimately lowering the cost of ownership.
672 Domino Designer 6: A Developer’s Handbook

14.12.5 Benefits of using CORBA
Some advantages to using CORBA are:

� You can use Domino Object Model (DOM) back-end classes to support
CORBA.

� The client does not have to deal with issues such as networking or security.

� CORBA allows many different clients to use the same objects (not copies of
the objects). The latest version of the object is always used.

� Client applications can be in different languages from the Server Objects.

� Java ORBs and Stubs can be downloaded to the client at runtime, which
means:

– Users do not have to install the application on the client before running it.
– Clients are always working on the most current version of the application.
– Network computers are supported as clients, as the application is

removed when the computer is turned off.

14.12.6 How and when to use CORBA
CORBA support can be easily added to Java applets and applications to extend
their reach into the Domino back end. In order to utilize CORBA, you must make
small changes to your server and Java programs.

A Java program using CORBA has the following requirements:

Server
The server tasks HTTP and DIIOP must be running. Ensure that the notes.ini file
contains the following line:

ServerTasks=<any other tasks>,http,diiop

To enable an applet for CORBA, import your applet into a form and select the
appropriate properties from the applet InfoBox. (For performance reasons, when
a CORBA-enabled applet is loading in the Notes client, all calls are transparently
made to the Notes DLLs, rather than the Java classes.)

14.12.7 Compiling and running a Java program
The package lotus.domino, which comes with Domino 6.0, supports local and
remote calls to the Notes object interface. This package contains the same
classes and methods as the lotus.notes package shipped with Domino R5, plus
new classes, new methods, and other enhancements.
 Chapter 14. Programming for Domino 6 673

Note: The Domino R5 lotus.notes package is supported for
backward-compatibility only.

A Java program using the Domino classes has the following requirements:

Server
The server tasks HTTP and DIIOP must be running. Ensure that the notes.ini file
contains the following line:

ServerTasks=<any other tasks>,http,diiop

Designer
Ensure that the NOTES.INI file contains the following line:

ALLOW_NOTES_PACKAGE_APPLETS=1

Include NCSO.jar and Notes.jar in your CLASSPATH environment, for example:

set CLASSPATH=<other>;<domino>\java\NCSO.jar;<domino>\Notes.jar

Notes.jar contains the high-level lotus.domino package, the lotus.domino.local
package for local calls, and the old lotus.notes package. NCSO.jar contains the
high-level lotus.domino package and the lotus.domino.corba package for remote
calls. Strictly speaking, you do not need NCSO.jar if you are not compiling
remote calls, and you do not need Notes.jar if you are not compiling local calls or
old calls.

Your class code must import the high-level lotus.domino package:

import lotus.domino.*

14.12.8 Runtime requirements
� A machine running a Java application that makes local Notes calls must

contain Domino 6.0 (Client, Designer, or Server) and must include Notes.jar in
the CLASSPATH.

� A machine running a Java application that makes remote Notes calls need not
contain Domino 6.0, but must contain NCSO.jar and must include NCSO.jar in
the CLASSPATH.

� A machine running a Domino 6.0 agent that makes Notes (Java) calls must
include Notes.jar in the CLASSPATH.

Note: A machine running an applet that makes Notes calls needs no Domino
software or CLASSPATH assignments.
674 Domino Designer 6: A Developer’s Handbook

� The server must be running when remote calls are made.

14.12.9 Remote calls to lotus.domino package
In order for a Java application to have remote runtime access to lotus.domino,
you must create a Session with the NotesFactory method createSession (String
IOR, String user, String pwd).

The IOR, or initial object reference, parameter is required to access a Domino
server remotely. It is a string contained in the file diiop_ior.txt in the notes
directory of the Domino server. The NotesFactory method getIOR(String host)
returns the IOR for a given host. Use the createSessionWithIOR methods if you
have another mechanism for getting the IOR.

The second and third parameters must be a user name and Internet password in
the Domino directory on the server being accessed. If empty strings are
specified, anonymous access must be permitted by the server.

The application must not use the NotesThread method. NotesThread is for local
access only.

This example demonstrates an application using remote calls:

import lotus.domino.*; // replaces old lotus.notes package
public class platform3 implements Runnable
{
 String host=null, IOR=null, user="", pwd="";
 public static void main(String argv[])
 {
 if(argv.length<1)
 {
 System.out.println("Supply Notes server name");
 return;
 }
 platform3 t = new platform3(argv);
 Thread nt = new Thread((Runnable)t);
 nt.start();
 }

 public platform3(String argv[])
 {
 host = argv[0];
 if(argv.length >= 2) user = argv[1];
 if(argv.length >= 3) pwd = argv[2];
 }
 Chapter 14. Programming for Domino 6 675

 public void run()
 {
 try
 {
 IOR = NotesFactory.getIOR(host);
 Session s = NotesFactory.createSession(IOR,user,pwd);
 String p = s.getPlatform();
 System.out.println("Platform = " + p);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

14.12.10 Applet calls to lotus.domino package
An applet intended for run-time access of lotus.domino extends AppletBase and
puts its functional code in the methods notesAppletInit(), notesAppletStart(), and
notesAppletStop().

You do not have to distinguish between local and remote access. AppletBase will
make local calls if the applet is running on a machine with Domino installed, and
remote calls otherwise. Domino will automatically supply the IOR.

Here is an example of an applet:

import lotus.domino.*;
public class platformApplet extends AppletBase
{
 java.awt.TextArea ta;
 public void notesAppletInit()
 {
 setLayout(null);
 setSize(100,100);
 ta = new java.awt.TextArea();
 ta.setBounds(0,0,98,98);
 add(ta);
 ta.setEditable(false);
 setVisible(true);
 }
 public void notesAppletStart()
 {
 Session s;
676 Domino Designer 6: A Developer’s Handbook

 try
 {
 // Can also do openSession(user, pwd)
 s = this.openSession();
 if (s == null) { //not able to make the connection, warn user
 ta.append("Unable to create a session with the server");
 return;
 }
 String p = s.getPlatform();
 ta.append("Platform = " + p);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 // this.closeSession(s);
 }
 }
}

Setting security options for Java applets
You can now set security options for applets to prevent unauthorized access to
your Notes file system or to Notes Java classes. You create an execution control
list that identifies what people and groups you trust with access to your Notes
system.

When an applet runs on your workstation, Notes checks for execution rights of
the person or group that signed the applet. If an applet is signed by a person or
group without the correct authorization, Notes alerts you to the illegal operation.
You can abort the operation and not run the applet, or trust the signer of the
applet one time, or automatically add the signer to the execution control list.

Note that this security model only applies to applets running on the Notes client.
Applications running on a Web browser must follow the security model set by the
browser.

To set applet security:

1. Choose File -> Security -> User Security.

2. Click What Others Do and then either Using Workstation, Using Applets, or
Using JavaScript.

3. (Optional) To add an item to the “When n is signed by” list, click Add, enter
the name of the person or organizational certifier, for example /Acme (click
 Chapter 14. Programming for Domino 6 677

the person icon to choose a name from your Personal Address Book), then
click OK. You can then decide access for that item.

4. (Optional) To edit an item in the “When n is signed by” list, select the item,
click Rename to edit the item or enter a new name (or click Remove to delete
an item from the list), then click OK.

5. Select the person or organizational certifier whose access you want to
specify.

6. Enable the types of access you want this person or organizational certifier to
have.

Note: The implementation of this applet security system removes the restriction
on using Notes classes in Java applets.

Using the NotesThread Class
A standalone program must use the lotus.domino.NotesThread class, which
extends Java.lang.Thread. You can either extend NotesThread, or implement the
run-able interface.

If you extend NotesThread, the entry point to the functional code must be public
void runNotes(). If you implement run-able, the entry point must be public void
run().

Note the following points:

� A Domino or Domino agent program must extend the lotus.notes.AgentBase
class, which extends lotus.domino.NotesThread. The class that contains the
agent code must be public. The entry point to the functional code must be
public void NotesMain().

� The lotus.domoino.Session class is the root of the Notes back-end object
containment hierarchy.

– For standalone programs, use one of the NotesFactory.createSession
methods to create a Session object.

– For agents, use the AgentBase method getSession().

� System.exit must not be used to terminate a program using the NotesThread
class (and by extension the AgentBase class). In an agent, System.exit
throws SecurityException. In a standalone program, System.exit may cause
corruption problems.

� For foreground agents, System.out and System.err output goes to the Java
debug console. For locally scheduled agents, System.out and System.err
output goes to the Domino log.
678 Domino Designer 6: A Developer’s Handbook

14.12.11 Creating a Java agent
The following examples show how to create Java agents.

Example 1: Java agent
This example shows an agent that runs on newly created and modified
documents since the agent was last run. The program works on the unprocessed
documents, prints the form name of each document, and marks each document
as processed.

The first time the agent runs, it returns all of the documents in the database.
Thereafter, the agent returns those documents that updateProcessedDoc has
not touched.

� Create an agent:

– Name the agent.

– Select When should this agent run = Manually from Actions Menu.

– Which documents should it act on = All documents in database.

– Select Java as your source code and write the agent code.

import lotus.domino.*;
import java.util.*;

public class myagent extends AgentBase
{
 public void NotesMain()
 {
 try
 {
 Session s = getSession();
 AgentContext ac = s.getAgentContext();
 DocumentCollection dc = ac.getUnprocessedDocuments();
 Document doc;
 int size = dc.getCount();
 System.out.println("Count = " + size);
 doc = dc.getFirstDocument();
 while (doc != null)
 {
 System.out.println
 (" *** " + doc.getItemValue("form"));
 ac.updateProcessedDoc(doc);
 doc = dc.getNextDocument(doc);
 }
 }
 catch (Exception e)
 {
 Chapter 14. Programming for Domino 6 679

 e.printStackTrace();
 }
 }
}

– Save it.

Example 2: using Java Notes classes
This sample Java program is from Lotus Technology Learning Center. The Java
code is commented to help you understand how the Java Notes class is
implemented.

This program creates an instance of NotesThread, a class which extends the
Java Thread class. It allows Notes to properly initialize and terminate per thread
in a convenient way for the programmer.

This sample program does the follow things:

1. Creates a new Notes session.
2. Opens a database (in this case, the local Address Book).
3. Accesses the People view.
4. Searches the People view for the entered name.
5. Accesses the document that matches the search criteria.
6. Pulls the Spouse field out of the document.
7. Prints the Spouse field in a message output.

Running this sample
1. Add a person John Smith and his spouse Mary Smith into the local Address

Book. John Smith will be used as a parameter to the command to run the
Java program.

2. Write the following code into a Java program(.java) and set your PATH and
CLASSPATH, for example, as follows:

PATH = c:\jdk1.1.3\bin;c:\notes\;
CLASSPATH = c:\jdk1.1.3\lib\classes.zip;c:\notes\notes.jar;

3. Compile the Java program.

4. Type the command:

Note: We used Java JDK Version 1.1.3 from Sun. You can download it
from:

www.javasoft.com
680 Domino Designer 6: A Developer’s Handbook

javac myjavafile.java

The output is a file named abe.class.

5. Run this class file at a DOS command prompt:

C:\jdk1.1.3\bin> java abe.class John Smith

Expect output similar to the following:

Creating Notes session...
User name = CN = John Smith OU=CAM O= Lotus
Spouse of John is Mary Smith
Date Created : 08/15/97 16:00:00 PM EDT

The sample program is listed here for your information:

/* Copyright 1997, Iris Associates, Inc.
Sample Java program, for illustrative purposes only.
*/
import lotus.domino.*;
import java.lang.*;
import java.util.*;

class abe implements Runnable
{
public String g_name;

// if you run the class from the command line...
public static void main(String argv[])
throws Exception
{
// print out a message, then exit, no args provided
if (argv == null || argv.length == 0)
 System.out.println("Usage: java abe <user name>");

else
 {
 // create new instance of abe
 abe t = new abe();

 // store name to look up in the instance
 t.g_name = argv[0];

 // make sure the Notes lsx is loaded
 NotesThread.load(true);

 // create a thread instance for running abe, start it
 NotesThread nt = new NotesThread((Runnable)t);

 // start the thread, call our runNotes()
 nt.start();
 Chapter 14. Programming for Domino 6 681

 }
}

// this would get called if we ran it from java.lang.Thread
// instead
public void run()
{
runNotes();
}

public void runNotes()
 {
 int i;
 try
 {
 System.out.println("Creating Notes session...");
 Session s = NotesFactory.createSession();

 // show off, print the current user's name
 System.out.println("User name = " + s.getUserName());

 // get db instance for the name and address db
 Database db = s.getDatabase("","names.nsf");

 // find the "People" view
 View view = db.getView("People");

 // search for the name provided
 view.FTSearch(g_name);

 // for now, ignore multiple matches
 Document doc = view.getFirstDocument();

 // look up contents of the "spouse" field
 String name = doc.getItemValueString("Spouse");
 System.out.println("Spouse of " + g_name + " is " + name);

 // also print out the date the document was created
 System.out.println("Date created: " + doc.getCreated());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

682 Domino Designer 6: A Developer’s Handbook

14.12.12 Java Database Connectivity (DBC)
The Domino driver for Java Database Connectivity (JDBC), providing standard
JDBC access to data in Domino databases, is also available from the Lotus Web
site:

http://www.lotus.com

By using this driver, you can write Java applets and applications that use JDBC
to access information in Domino databases. JDBC classes ship with Domino in
the java.sql classes. These classes may be used when writing Java agents to
access relational data via standard JDBC drivers.

14.12.13 Servlets
Java servlets, as their name suggests, only run on the server. A servlet is
invoked by a client request and will respond directly to the client.

Typically, a servlet will be used to provide a high performance link to a back-end
system and format the results back to the client as a HTML document. However,
servlets are not restricted to serving just HTTP requests, and may in fact
converse directly with any suitable client application (usually an applet)— a loose
analogy can be drawn to the ability in Domino to invoke an agent directly from a
HTTP request (myagent?openagent¶m1=value1).

Creating a servlet
To create a servlet, you need a Java compiler and the servlet API. You can obtain
both from Sun Microsystem's Web site:

http://java.sun.com

Download the Java Development Kit (JDK), which includes the compiler and
other basic tools, and the Java Servlet Development Kit (JSDK), which includes
the servlet API specification, the servlet .JAR file (jsdk.jar), and example servlets.
The Sun site also provides links to other servlet resources on the Web.

You can also write servlets using any popular Java development environment,
such as IBM Visual Age for Java. As a convenience, a copy of jsdk.jar is included
in the Domino server and Designer installation kits. It is identical to the file
supplied in Sun's JSDK.

Sun periodically updates the JDK and JSDK. Lotus Domino Designer Release 6
supports JDK 1.3 and JSDK 2.0. Domino quarterly maintenance releases
(QMRs) often incorporate Sun's upgrades, so check QMR Release Notes to
verify the supported JDK and JSDK versions.
 Chapter 14. Programming for Domino 6 683

You can create a servlet that accesses Domino through the Common Object
Request Broker Architecture (CORBA) interface. If the servlet accesses Domino
through the CORBA interface, it can specify a Domino user name and Internet
password. Domino security applies to all CORBA operations.

You can control who can access the servlet by using file protection documents in
the Domino Directory.

Calling a servlet
You can invoke directly by a URL. Domino recognizes two types of servlet URLs:

1. A servlet specified by its name (for example:
http://acme.com/servlet/SQLDatabaseQuery?month=june).

2. A file extension that the Domino administrator has mapped to a servlet (for
example: http://acme.com/sqlquery.esp?month=june).

A servlet is loaded once, and it stays loaded until the HTTP server task is shut
down or restarted. This gives servlets a significant performance advantage over
agents or CGI programs.

However, this also means that the servlet classes can be accessed from many
requests simultaneously, so you must make sure that the servlet code is
thread-safe.

14.12.14 Java Server Page (JSP)
A JSP is a dynamic HTML Web page that contains code that executes
application logic to generate on-demand content. The HTML page is created at
the time it is requested.

JSP pages are compiled into servlets; the code they contain is processed by the
server, and the result is displayed back for the Web client. For more information
on JSPs, see the Sun Microsystems Web site:

http://java.sun.com/products/jsp/

JSP language structure
JSP technology provides a flexible structure since it supports custom tags, thus
making this standard more extensible and improving its usability. Its structure
separates the roles of graphic designers and programmers. Based on Java
technology, JSP is also portable, so you can “write once, run everywhere”.
684 Domino Designer 6: A Developer’s Handbook

Figure 14-41 JSP code sample

Figure 14-41 illustrates JSP syntax in a simple sample, where we can highlight
the following parts:

JSP tags
You can now retrieve Domino data from an NSF database for use in a JSP tag.
Designer 6 includes custom tag libraries that you can include in your Web site
directory files. The power of a JSP page is in the tags that it contains. JSP tags
are similar to HTML tags, except they contain a reference to Java implementation
classes rather than to instructions on how to display the tag body. This section
defines how to use tag libraries.

A JSP tag library is a collection of custom JSP tags. The library defines
declarative, modular functionality that can be reused by any JSP page. The tags
are defined in XML format in a text file known as the Tag Library Descriptor file or
TLD.

Syntax Description

HTML Standard HTML code

Directives Command the JSP parser

Expression Emit strings into your HTML

Scriptlet Blocks of code

<%@ page language=”java” %>

<% String theName = request.getParameter(“name“); %>

<html>

<body>

<h1>Hello, <%=theName%> !</h1>

</body>

</html>

Directive

HTML

Scriptlet

Expression
 Chapter 14. Programming for Domino 6 685

In the TLD, the tag definitions tell the JSP parser how to interpret each tag, its
attributes, and its body content. By grouping the tags into one library file, they
can be shared by several JSPs.

The advantage of using Domino JSP tag libraries is that they enable Web page
authors who are not Java experts, or who are not versed in handling back-end
Domino objects, to incorporate complex, server-side Domino data manipulation
into their pages through easy-to-use tags.

There are two Domino JSP tag libraries, as shown in the following table. Both
comply to the JSP 1.1 and Java Servlet 2.2 specifications developed by Sun
Microsystems.

You can download the JSP 1.1 specification from:

http://java.sun.com/products/jsp/download.html

You can download the Java Servlet 2.2 specification from:

http://java.sun.com/products/servlet/download.html

Using Domino JSP tags with a Web application server
The Domino JSP tag libraries are designed to let you build applications that can
run on any J2EE-compliant Web application server.

To use the tags in a Web application:

1. Copy the domtags.jar file, which is located in the Notes/Data/domino/java
directory, to the WEB-INF\lib directory for the Web application.

2. Copy the domtags.tld and domutil.tld files, which are also located in the
Notes/Data/java directory, to the WEB-INF directory for the Web application.

3. In the web.xml file for your application, define the following tag library XML
tags:

<taglib>
<taglib-uri>domtags.tld</taglib-uri>
<taglib-location>/WEB-INF/domtags.tld</taglib-location>

</taglib>

Tag library name Includes

domtags.tld Collaboration tags for accessing standard,
back-end objects in the Domino data repository.

domutil.tld Utility tags for performing tasks that are common to
all J2EE Web containers.
686 Domino Designer 6: A Developer’s Handbook

<taglib>
<taglib-uri>domutil.tld</taglib-uri>
<taglib-location>/WEB-INF/domutil.tld</taglib-location>

</taglib>

You can also use the web.xml file to set default values for the tags listed in the
topic, “Setting default JSP Attribute values.”

4. Add either of the following Domino Objects for Java JAR files to the classpath
of the server hosting the Web application:

– NOTES.JAR - use this if you are setting up the application for local access
(Domino and the Web application server on the same machine.) Note also
that you must either disable the HTTP task or reassign its port number,
since the default for both the HTTP and DIIOPtasks is port 8080.

– NCSO.JAR - use this if you are setting up the application for remote
(CORBA/DIIOP) access (Domino and the Web application server on
different machines.)

If you are using WebSphere as the Web application server, use NCSOW.JAR
instead. The NCSOW.JAR file does not include the ORB (or Object Request
Broker) implementation; the ORB supplied with WebSphere is used instead to
avoid conflicts during the brokering process.

Let’s check this sample of using JSP tags to get some information from a Domino
database:

Example 14-2 JSP file using JSP tags

<HTML>
<HEAD>
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<TITLE>domview.jsp</TITLE>
<%@page language="java" session="true" isThreadSafe="true"
isErrorPage="false"%>
<%@taglib uri="WEB-INF/tlds/domtags.tld" prefix="domino"%>
</HEAD>
<BODY>
<H2>By Genre</H2>
<domino:view dbname="cddb2.nsf" viewname="By Genre">

<TABLE border="0">
<domino:viewloop>

<domino:ifcategoryentry>
<TR><TD class="category"><domino:viewitem name="Genre"/></TD></TR>

</domino:ifcategoryentry>
<domino:ifdocumententry>

<TR><TD></TD>
 Chapter 14. Programming for Domino 6 687

<TD><domino:formlink href="multiform.jsp"><domino:viewitem
name="Album Title"/></domino:formlink></TD>

<TD><domino:viewitem name="Artist"/></TD>
</TR>

</domino:ifdocumententry>
</domino:viewloop>
</TABLE>

</domino:view>

<form action="multiform.jsp" name="newEntry">
<input type="submit" value="Create New Entry"/>

</form>
</BODY>
</HTML>

This example accesses a Domino database from a JSP file, through jsp tags,
and displays the album title and artist name of all viewed documents. Each result
row is a link for the specified document, and the multiform.jsp file handles these
events if the user required that for some document. This sample also lets the
user create new documents, through the Create New Entry button.

Using Domino JSP tags with WebSphere remotely
The Domino JSP tag libraries are designed to work with any Web server that
supports J2EE standards. This section outlines the steps required to run a tag
application remotely with Domino Release 6 and WebSphere AES or AE (single
server edition).

1. Put the NCSOW.jar file into either:

– <websphere dir>/appserver/lib/ext, if you want to run more than one
application that uses the custom tags

– WEB-INF/lib directory of the application

Remove Notes.jar; only one JAR file can be installed at a time.

2. If you were running WebSphere and Domino from the same machine
previously, be sure to remove the path to Domino from the machine where
WebSphere is installed.

3. Make sure the Domino server is running and that the DIIOP task is running on
the server.

By default, the Domino HTTP and DIIOP tasks are both assigned to port
number 8080. Either disable the HTTP task or reassign one of the tasks to a
different port number.
688 Domino Designer 6: A Developer’s Handbook

4. Define the remote host for the tags by either:

– Adding a value for the host attribute to any tags in the application that have
a host attribute (these include the session, db, form, document, view the
dbselect, mailto, and runagent tags).

– Updating the web.xml file for the application to include a <context-param>
tag that specifies values for the lotus.domino.default.host and
lotus.domino.preset.host attributes, as follows:

<context-param id="ContextParam_host">
 <param-name>lotus.domino.default.host</param-name>
 <param-value>DominoServerName</param-value>
</context-param>

You assign and maintain the connection to a single host (that you define in the
host attribute) for the life of a session.

Note: Do not use *webuser as the value for the default or preset user attributes.
Specifying *webuser as the value for the user attribute should only be used with
container-based authentication and single sign-on. WebSphere AES does not
support container-based authentication nor single sign-on with Domino.

Incorporating the tag library in a JSP
A JSP author tells the Java parser where to find the Tag Library Descriptor file
using a taglib directive. The following taglib directives, when included in a JSP
page, indicate that tag libraries exist and where they are located:

<%@ taglib uri="domtags.tld" prefix="domino" %>
<%@ taglib uri="domutil.tld" prefix="util" %>

This code tells the JSP engine how to parse a page before it compiles it into a
servlet. Note that the taglib directives have the following two parameters:

1. uri - this specifies the name and location of the TLD file.

This can be either an absolute or relative URL that refers to the TLD.

2. prefix - this indicates the namespace to assign to the library.

You then use this namespace in front of the tag names of tag elements
defined in the TLD. The default namespaces for the domtags.tld and
domutil.tld libraries are domino and util, respectively. Using the defaults, you
would refer to the session tag as domino:session and the switch tag as
util:switch.

Incorporating individual JSP tags in a page
JSP tags are defined in the TLD using the Extensible Markup Language (XML)
format. Each tag element includes a set of attributes within its opening and
closing tags. The tag element represents a Domino object; its attributes further
 Chapter 14. Programming for Domino 6 689

define the object by qualifying what information it should share about itself with
the JSP page.

To include a tag, follow these steps:

1. In the HTML editor, after the page directives and opening <HTML> and
<BODY> tags, enter the opening angle bracket of a tag(<), followed by the
namespace for the TLD containing the custom tag you want to specify
(domino or util), a colon(:), then the tag name; for example:

<domino:view

2. Enter any attribute values you want to set for the tag by entering the attribute
name, followed by the equals (=) sign, then the value you want to set for the
attribute, surrounded by quotation marks. For example, to specify the
viewname and max attributes, enter:

<domino:view viewname="View Title" max="10"

Some tags attributes are required. For example, specifying a value for the
name attribute of a form tag is mandatory. See the documentation provided
here to determine which attribute values must be supplied for an individual
tag.

3. To close the tag:

– If other tags are included in the context of this tag, close the opening tag
with a closing angle bracket only (>). This indicates that this tag element
contains other elements. After you have added the tags contained within a
tag element to the page, you enter a closing tag for the
element(</domino:viewloop>).

This containment hierarchy of the tags helps to define the context
structure of the data. For example, to display a Domino view element on a
JSP, you use the viewloop tag. The viewloop tag contains one or more
viewitem tags within it. (Refer to the following example for the format used
to incorporate the viewloop tag.)

– If no other tags are included in the context of this tag, close the tag with a
slash, then a closing angle bracket (/>). This indicates that the tag element
contains no other elements. (Refer to the following example for the format
used to incorporate the viewitem tag.)

<domino:viewloop>
<domino:viewitem name="Customer"/>

</domino:viewloop>

JSP limits
Note the following known limit to JavaServer Pages:

� The size of a Java byte stream cannot exceed 64 K.
690 Domino Designer 6: A Developer’s Handbook

Be aware of the following point before you start developing JSPs:

� Incorporating a form into a page using the <jsp:include> tag renders any
validhref attributes on the form useless. You can define a validhref attribute for
the following tags: form, deletedoc, docnavimg, savedoc, saveclosedoc.

14.12.15 Script libraries
it’s very efficient to organize and group your code in a unique place such as a
script library, and leave it shared, so it can be used by other design elements. In
this way you code only in one place, instead of coding in several design
elements, thus reducing programming and maintenance time.

There are three kind of Script libraries:

� LotusScript
� Java
� JavaScript

In this section, we focus on the Java and JavaScript Libraries, as LotusScript
libraries are described elsewhere.

Java Library
To create a Java Library, follow these steps:

1. Open the database in Design mode and switch to the Shared Code\Script
Libraries pane; see Figure 14-43 on page 692.
 Chapter 14. Programming for Domino 6 691

Figure 14-42 Script libraries

2. Click New Java Library. (You may also choose Create -> Design -> Script
Library -> Java Library from the Action bar.) Figure 14-43 will be shown.

Figure 14-43 Java script library

3. Enter your code and save the library.
692 Domino Designer 6: A Developer’s Handbook

To include a Java library in a Domino Java agent, do the following:

1. Open your agent in design mode

2. Click Edit Project (this is shown at the bottom of the Programmer’s Pane in
Figure 14-43 on page 692).

3. The dialog box shown in Figure 14-44 is displayed.

Figure 14-44 Organize Java Agent Files dialog box

4. In the Browse field, select Local File System if you want to specify some file in
the File System, or select Shared Java Libraries. The last one displays a list
with the Java libraries for you to choose.

5. Select the options required, click Add/Replace File(s), and then click OK.

JavaScript library
To create a JavaScript Library, follow these steps:

1. Open the database in Design mode and switch to the Shared Code\Script
Libraries pane; see Figure 14-45 on page 694.

2. Click the New JavaScript Library button. (You may also choose Create ->
Design -> Script Library -> JavaScript Library from the Action bar).
Figure 14-45 on page 694 will be shown.
 Chapter 14. Programming for Domino 6 693

Figure 14-45 JavaScript script library

3. Enter your code and save the library.

You can include a JavaScript library in some design elements such as Forms,
Subforms and Pages. To do that, follow these steps:

1. Open a page, form, or subform in Designer.

2. Choose Create -> Insert Resource.

3. Highlight “JavaScript libraries” and select an available JavaScript library, and
then click OK. Figure 14-46 on page 695 will be shown.
694 Domino Designer 6: A Developer’s Handbook

Figure 14-46 Inserting a shared resource - javascript

This can both be added directly on the form, and as part of the “JS Header” of the
form, page or subform.

14.13 Summary
In this chapter, we covered some basic methods for programming the Domino
Object Model using LotusScript, JavaScript and Java, as well as for using COM
to integrate with Microsoft applications. We also covered accessing Domino
applications from JSP pages.
 Chapter 14. Programming for Domino 6 695

696 Domino Designer 6: A Developer’s Handbook

Chapter 15. Rich text programming

In this chapter, we describe how to copy, create, analyze, and manipulate rich
text in Notes documents.

Notes and Domino 6.0 contains lots of new functionality to give you more visibility
and control of information in rich text fields than was possible in previous
versions. This chapter has several examples of the practical use of these new
capabilities. All the examples presented here are available in a sample database,
Notes6RichText.nsf, which is available for download on the Redbooks Web site.
See Appendix B, “Additional material” on page 797 for instructions on how to
obtain it.

15
© Copyright IBM Corp. 2002. All rights reserved. 697

15.1 What is rich text
Rich text fields can contain free-form, “word processor” style information,
including images, file attachments, OLE objects, font and color changes, tables,
buttons, doc links and URL links, and so forth. If you need something other than
plain text, use a rich text field.

For “regular” fields, the font, color, text size, paragraph indentation and spacing,
tab stops, and hide settings are controlled by the form that contains the field. This
formatting information is not stored in the document. If you edit the design of the
form, and change the font for a field, when you open a document created with the
previous version of the form, the field will appear in the new font.

But rich text fields don’t work that way; with them, the formatting information is
stored in the document, as part of the rich text. The form establishes the default
formatting for the field, but the user can change these settings as they edit a
document, for parts or all of the text. This can happen inadvertently, for instance
if they copy and paste text from another Notes document. When they save the
document, their formatting is saved too. If you use Domino Designer to change
the form, it won’t affect the way rich text looks in existing documents.1

The text in a rich text field is stored in one or more paragraphs. Paragraphs are
delimited by a paragraph break (pressing the Enter key, if you’re typing). It’s
possible to have a line break within a paragraph either because the text wrapped
or because the user entered a line break (Shift+Enter). When text is contained
within a table or section, it’s still composed of paragraphs. A table cell or section
may contain more than one paragraph.

Figure 15-1 Use View / Show / Hidden Characters to see paragraph end markers

It’s helpful to think of rich text as a series of objects, which may include tables,
links, sections, and a great many other things. Text is also treated as an object; a
sequence of consecutive characters that are in the same paragraph and use the

1 Actually, depending how the user edited the text, a change on the form may affect the first
paragraph of the rich text in an existing document.

Tip: Don’t hide a rich text field by setting its hide attributes on the form. Rich
text has its own hide attributes, which override those on the form. Lotus
technote 179788 gives workarounds.
698 Domino Designer 6: A Developer’s Handbook

same style is referred to as a text run. Functions that let you work with rich text
tend to treat this sequence of characters as a unit. For instance, if you search the
rich text for a string, you’ll only find the string if all of its characters are in the
same text run.2

15.2 Summary versus non-summary fields
To save time and space when compiling view indexes and replicating documents,
Notes designates certain fields as summary fields. Only summary fields can be
used in views, and the replication settings dialog lets you opt to replicate only
summary information to your local replica.

In general, all non-rich text fields are summary fields, and vice versa. This is how
Notes creates the fields by default. You can change this default one document at
a time using an agent and the NotesItem.IsSummary property. If rich text is
flagged as a summary field, you can use @Abstract to display some of its
contents in a view. However, doing so is likely to impair performance of your
application. A more useful application of the IsSummary property is to set a non
rich text field to be non-summary, if you know it’ll frequently contain a lot of text
and you don’t need it in views.

15.3 Rich text and the Notes APIs
With the possibility of images inside of tables inside of merged table cells inside
of sections, the structures used to represent rich text are necessarily complex.
The tools for working with rich text are correspondingly complex. A detailed
discussion of this topic is beyond the scope of this guide; however, the Notes C
and C++ APIs, which you can download from the Lotus Web site, contain
documentation of the “CD Record” structure of rich text and example programs
for reading and creating rich text values.

You can do much more with rich text using the APIs, the C API in particular, than
you can with LotusScript, Java, or macro language. Some examples of things
you would need to use the API for are the following tasks:

� Work with images in a rich text field

2 However, it’s possible to strip out the formatting and get just the plain text of the field, so that you
can search the text without text runs being an issue.

Restriction: A paragraph of rich text is limited to 64K bytes. Since characters
are stored using a multi-byte character set, this will be much less than 64K
characters. Notes will break up too-long paragraphs into multiple paragraphs.
 Chapter 15. Rich text programming 699

� Create tables with:

– Merged cells

– Cells with background color or image that differs from the table
background color

– Hidden borders

– Timing properties (cycle through rows and so forth)

� Add or delete table columns

� Add formula buttons, text pop-ups, URL links, action hotspots, embedded
elements, or computed text

� Use bulleted or numbered lists

� Adjust hide properties and formulas

� Set attributes of a collapsing section to make it automatically open or close
depending on the edit mode

� Create a form and add fields to the form and formulas to the fields (the body
of a form is a rich text value)

There are workarounds for some of this. For instance, you can create the rich text
you want using the Notes user interface, then your program can copy and modify
it as required. This is a great way to create reports in Notes, as the examples in
this chapter show. However, you can’t directly program any and all rich text
without using the API.

15.4 New rich text capabilities in Notes 6
With Notes 6, you can get much more detailed information about the contents of
a rich text field than was previously possible. You can change properties of
existing elements (for example, change the background color of a table), and edit
or delete information in the middle of an existing rich text value.

In Notes R5 you could create rich text only by adding to the end—you could not
insert in the middle or delete anything that was already there. You could select
fonts, colors, indentation, line spacing, and tab stops; add text, line breaks,
paragraph breaks, doclinks, file attachments, and OLE objects. When reading
rich text, you could get the text from the field, or scan it for file attachments or
OLE objects.

With Notes 6, you can also create tables and collapsing sections. You can scan
the rich text for the most common elements—text, paragraphs, font changes,
style changes, links, tables, sections, and attachments. You can find out
700 Domino Designer 6: A Developer’s Handbook

information about these elements—for instance, what font is being used or how
many rows are in a table.

These capabilities are available in LotusScript using several new classes in the
Domino object model. They are described in detail in later sections, along with
the previously existing functionality. The new capabilities are not available in Java
or COM/OLE2 in the initial Notes 6 release; they may be added in a point
release.

Another new feature that will be helpful in many applications is the Rich Text Lite
field type. While a standard rich text field lets the user add any kind of information
they like, in many applications it’s undesirable to allow that much freedom. If
there’s a field where you just mean to have the user attach a single file, or add a
photo, or some other specific thing, you can restrict their input to just that and
nothing else. Refer to the online help file for details about this feature.

15.5 Rich text in macro language
Macro language has no datatypes for handling complex data such as appears in
a rich text field. You can’t tell, for instance, whether the rich text contains a table.
But you can copy out the text and work with that, or copy a rich text value from
one document to another without knowing what’s in it. You can also get
information about file attachments, though it’s not possible to tell whether a file is
attached to a particular rich text field or to the document.3

Anything more complex requires using LotusScript or Java. But the simple
functions available through macro language do have their uses.

15.5.1 Macro language functions to handle rich text
Several macro expressions can be used to refer to rich text values. Macro
language lacks operators for manipulating the values—you can’t concatenate
two rich text values together, for instance. However, you can copy rich text fields
from one document to another or get their text. The expressions you can use to
work with rich text values include:

� @Abstract: This function produces a compacted, truncated, and abbreviated
version of the text in a rich text field. Various arguments let you select the
maximum length and the degree of compaction and abbreviation desired.
@Abstract is handy when you need to use the rich text in a situation that calls
for brevity. For instance, you might use it in an agent to forward e-mail to a
pager or cell phone.

3 An attachment is attached to the document, as opposed to a rich text field, if it’s added from a
Domino Web form using the file upload control. This is sometimes called a “V2 style” attachment.
 Chapter 15. Rich text programming 701

@Abstract is also useful if you must summarize rich text information for
display in a view column. Recall, however, that rich text by default is a
non-summary field, so view formulas cannot read its value. The
recommended way to deal with this, is to create a Computed field on the form
that uses @Abstract to create the rich text synopsis as the document is
saved.

� @Text: New in Notes 6.0, the @Text function returns the complete text of a
rich text field (compare to @Abstract, which abbreviates words and reduces
the size of the text to a number of characters you specify). In earlier versions,
@Text could not get information from a rich text field. As with @Abstract, you
can’t use this capability in a view column or selection formula, but it’s useful
for agents and occasionally for form fields.

� @GetDocField and @GetField can retrieve a rich text value, which you can
then assign to a different field.

� @GetProfileField: If you create a profile form that contains a rich text field,
you can use @GetProfileField to retrieve that value, just as you could any
other field type. Read more about profile documents in 4.13, “Profile
documents” on page 168. This is mainly useful in providing a default value for
a rich text field.

� @DbLookup: If given the name of a rich text field as the final argument, this
function lets you retrieve a rich text value using a view key. This is mainly
useful in providing a default value for a rich text field.

� @Attachments, @AttachmentNames, @AttachmentLengths, and
@AttachmentModifiedTimes let you retrieve information about file
attachments and embedded objects, which are generally in a rich text field.
One OLE object will appear to be several attachments, according to these
functions. These functions do work in a view.

You can also refer to a rich text field by name, if it’s in the current document, and
use a FIELD statement to copy the value:

FIELD Comment := LongDescription; REM “Create a copy of LongDescription RTF”;

A word of caution about using rich text in macro language. Depending what’s in
the rich text item, if you copy it from place to place using macro language, you

Note: If you use @Text on too large a field you will get a “User defined error.”
@Abstract does not have this problem.

Restriction: You can’t copy file attachments, embedded objects, and fonts
(other than the Notes default fonts) using macro language. LotusScript does
not have this problem in version 6.
702 Domino Designer 6: A Developer’s Handbook

may not get all of it. File attachments and OLE objects, while they are displayed
as part of the rich text, are actually stored in a separate item named $FILE. If you
copy the rich text, you’ll copy the icon of an attachment, but not the actual file.
Likewise, using fonts other than the Notes default fonts requires storing some
data in a separate item called $Fonts; this will not copy over along with the rich
text that uses the fonts, so the copy of the rich text will use a Notes default font
instead.

15.5.2 Working with rich text in edit mode
If you refer to a rich text item—either by name, or using @Text or @Abstract—in
a document in edit mode, the information you get won’t reflect recent changes
the user has made in the field. Instead, you’ll get the value the field had when the
document was opened. Unlike with other field types, Notes normally doesn’t
“notice” the user’s edits until they try to save the document. This has to do with
the “front-end/back-end” distinction discussed in 14.2, “The Domino Object
Model” on page 565.

You can force Notes to process the user’s edits by calling the LotusScript method
NotesUIDocument.Refresh(True). This refreshes all the fields, the same as F9 or
View/Refresh, and in addition updates the rich text values into the “back end”
document. There is no corresponding macro language function; a normal
refresh, for example using @Command([ViewRefreshFields]), will not update rich
text.

Notes doesn’t let rich text changes move the other way, meaning you can’t make
changes on the “back end” of a document in edit mode and make the user’s
document display those changes. However, the various [Edit...] @Commands let
you change the contents of the editing field directly.

15.5.3 Example application: default value for rich text field
Although a rich text field allows the entry of free-form information, in practice,
many applications want users to enter information in a particular format: it might
be a table that needs to be filled in, or a preferred outline structure for a
document. You can design the desired structure onto the form, but this makes the
application inflexible. If you want to assist users instead of trying to control them,
you can fill in the field with starting information that they can then modify.

To do this, create a profile form and add a rich text field to the form. Refer to
4.13, “Profile documents” on page 168 for a complete explanation of profile
 Chapter 15. Rich text programming 703

documents. We have named our profile form “MasterProfile”—our own choice,
not a reserved word.

Figure 15-2 MasterProfile form in Domino Designer

Edit the profile document and add the starting field contents. As mentioned
previously, non-default fonts, file attachments, and OLE objects won’t work here;
you can’t copy them when you copy the field that contains them. To prevent this,
in our sample database, we’ve added a validation to the Querysave event of the
MasterProfile form to check for these types of data and prevent the user from
saving them.

Figure 15-3 Profile document being edited to provide default rich text value
704 Domino Designer 6: A Developer’s Handbook

In the rich text field on the Document form, use @GetProfileField in the Default
Value formula to read the rich text field from the profile document.

Figure 15-4 Document form in Domino Designer

Now, when a user composes this document, the rich text field will automatically
be filled in with whatever rich text you’ve entered in the profile document.

If you don’t care for profile documents, you can store the default value in a
regular Notes document and use @DbLookup in your default formula instead of
@GetProfileField. Profile documents give better performance.

15.6 Working with rich text in LotusScript and Java
Most of the new rich text functionality is available through new classes and
methods of the Domino Object Model.

Certain “front-end” functions (see discussion about “front-end/back-end” in 14.2,
“The Domino Object Model” on page 565) are available only when working on
documents in edit mode, using the NotesUIDocument class. Since there is no
equivalent Java class, these functions aren’t available in Java. In addition, the
rich text classes, methods, and properties that are new in Notes 6 are not
available in Java in the 6.0 release. We expect these functions to be available in a
point release.

In this section, we discuss the LotusScript implementation of the classes only.
For those functions which are also implemented in Java, the method names and
operation are generally the same.

15.6.1 The LotusScript rich text classes
Table 15-1 on page 706 shows the classes available for working with rich text in
the back end, which means starting with a NotesDocument object as opposed to
a NotesUIDocument.
 Chapter 15. Rich text programming 705

Table 15-1 LotusScript classes for handling rich text

15.6.2 Creating and appending to rich text
To create a new rich text value from scratch, or to add to an existing one, start
with a NotesDocument object. To create a new rich text item, use
NotesDocument.CreateRichTextItem. To work on an existing one, use
NotesDocument.FindFirstItem to locate it. If you’re not sure whether the field
already exists, use both methods, as shown in the code sample.

Example 15-1 Locating or creating a rich text item to append to

...
Dim rtf As Variant
‘ We think it's a NotesRichTextItem, but in case it's not, this avoids a
‘ type mismatch.

Class name (*=new in Notes 6) Represents

NotesRichTextItem The entire contents of a rich text field.

NotesEmbeddedObject An OLE object or file attachment within the rich
text. Note: These objects can also be associated
with the document, for example, if an attachment is
added via Domino file upload control.

NotesRichTextDocLink * A doc link, view link or database link, with either an
icon or link text. LotusScript doesn’t contain a way
to work with URL links.

NotesRichTextParagraphStyle The settings you can make on a paragraph:
indentation, line spacing, tab stops.

NotesRichTextTab A single tab stop, including position and alignment.
Contained in NotesRichTextParagraphStyle.

NotesRichTextStyle The settings you can make on text: font, size, color,
effects, and so forth.

NotesRichTextTable * A table.

NotesRichTextSection * A collapsing section.

NotesRichTextNavigator * A position within the rich text; you can think of it as
a “cursor” where you can insert or edit items.

NotesRichTextRange * A consecutive subset of the rich text contents. You
can think of it as a “selected area.”

NotesColorObject * A color, which can be specified using 256 levels of
red, green and blue, or hue, lightness, and
saturation.
706 Domino Designer 6: A Developer’s Handbook

Set rtf = doc.GetFirstItem(“Comment”)
If rtf Is Nothing Then ‘ the item doesn’t already exist; create it.

Set rtf = doc.CreateRichTextItem(“Comment”)
End If

...

We’ve defined the variable rtf as a Variant here, even though we know that it will
contain a NotesRichTextItem object, so that we can use it with GetFirstItem. If the
field is not a rich text field, Set rtf =... line would result in a type mismatch
error at runtime. Refer to the online help of GetFirstItem for details.

Once you have the NotesRichTextItem object, you can use the methods of
NotesRichTextItem to add text and elements, and set the properties of those
elements. The code is easy to understand, but you’re limited to those properties
defined in the various objects.

If you need to create rich text with some attributes not provided by the classes,
the easiest way is to have the rich text elsewhere, load it into your program, and
append it to the item in progress. Refer to “Adding rich text copied from
elsewhere” on page 714 for details.

In the meantime, here’s what you can do using just method calls, starting with the
simplest techniques and moving forward to more and fancier rich text
constructions.

Adding simple text
The most straightforward operation when appending to rich text is to add some
text to the end of the field. The following methods of NotesRichTextItem are used
for this:

� AppendText to add text.

� AddNewLine to start a new line or paragraph.

� AddTab to insert a Tab character.

� AddPageBreak to start a new page.

The only point about these methods that’s even slightly tricky is with
AddNewLine, specifically the distinction between adding a line break (the default)
and a paragraph break. This corresponds to using Shift+Enter versus just Enter
when entering rich text manually.

If you’re not using any hanging indents or paragraph spacing, you’re not going to
notice the difference between a line break and a paragraph break when you view
your output. However, you should still pay attention to which one you’re using,
because you can only store 64K bytes of text in a single paragraph, and each
 Chapter 15. Rich text programming 707

character requires multiple bytes. If you don’t start a new paragraph occasionally
yourself, Notes will start one for you, and you might not like where it chooses to
do so.

The sample database contains an agent, “Rich Text Creation\1. Simple text”,
which demonstrates the uses of these methods. The code is in Example 15-2.

Example 15-2 Partial code of “Rich Text Creation\1. Simple text” agent

...
Dim doc As New NotesDocument(db) ' create a new document in memory.
Call doc.ReplaceItemValue("Form", "Document")
Call doc.ReplaceItemValue("Subject", "Simple rich text")
Dim rtf As NotesRichTextItem
Set rtf = New NotesRichTextItem(doc, "Body")
Call rtf.AppendText("Here’s a new rich text field with just plain text.")
Call rtf.AddNewline(1, True)
Call rtf.AppendText("The beginning of a new paragraph. Now a line break.")
Call rtf.AddNewline(1, False)
Call rtf.AppendText("In edit mode, put the cursor on this line and press” _

& ” F8. The line above also changes.")
Call rtf.AddNewline(1, True)
Call rtf.AppendText("A tab:")
Call rtf.AddTab(1)
Call rtf.AppendText("and more text, then a page break.")
Call rtf.AddPageBreak()
Call rtf.AppendText("That's all, folks!")

' make Notes complete cached rich text changes.
Call rtf.Update()
Dim ws As New NotesUIWorkspace
Call ws.EditDocument(True, doc)

Figure 15-5 Output of “Rich Text Creation\1. Simple text” agent

In this case, the document we’re creating the rich text item in doesn’t exist on
disk. The agent creates it in memory and doesn’t save it. It assigns fields and
uses NotesUIWorkspace.EditDocument to open the document in edit mode.
Note the use of the NotesRichTextItem.Update method (new in Notes 6). For
efficiency, Notes caches rich text changes; before calling EditDocument, you
must force it to complete any cached updates, or your rich text changes will not
708 Domino Designer 6: A Developer’s Handbook

be visible on screen. You can flush the cache either with Update, or by saving the
document (NotesDocument.Save), or with NotesDocument.ComputeWithForm.
Update is most efficient.4

The call to EditDocument opens the document on screen for the user to edit. You
can do this even though the document has never been saved; the effect is the
same as if you’d composed a new document and filled in fields for the user.

EditDocument can also be used to open the document in read-only mode, even if
the document has never been saved. This is useful for displaying a report, where
you don’t want to let the user edit the report.

Using text styles
Now let’s see how to control the appearance of the characters in your text. To do
this you need another class, NotesRichTextStyle. This class contains settings for
all the text attributes, collected together into one tidy package. It was done this
way because you often make character style changes in groups—you don’t just
want italic, you want bold italic 16 point Times Roman, and you want to use that
same combination of attributes several times. NotesRichTextStyle lets you store
all the properties together in a single variable and apply them all at once.

However, if you prefer to change just one text attribute at a time, you can do that
also. If you assign just a few properties of the style object, when you apply that
style, only those text properties will change. Say you want to turn italics on or off
when you like, while keeping the font, size, or color of the text as they are. You
could define two styles: one that adds italics to whatever style is currently in
effect, and one that turns off italics.

The next example demonstrates both approaches with four style objects:

� header, used to format a section header line in a report

� normal, used for the lines within a section

� italicOn and italicOff to turn italics on and off

These four names are just what we chose to call the object variables—they’re not
keywords. You have to use the NotesRichTextStyle properties to define what they
mean.

Portions of the code are omitted from Example 15-3 since they are similar to the
previous example. Also, if you compare this to the previous example, you’ll notice
that here we chose to omit the keyword Call and the parenthesis around the
arguments. This has no effect on how the program runs; for an explanation of the

4 None of these three methods will push back-end rich text changes into a document that’s already
open in edit mode.
 Chapter 15. Rich text programming 709

Call keyword refer to the document “Call statement” in Domino Designer 6 Help
database.

Example 15-3 Partial code of “Rich Text Creation\2. Text styles” agent

...
Dim italicOn As NotesRichTextStyle
Set italicOn = ses.CreateRichTextStyle()
italicOn.Italic = True

Dim italicOff As NotesRichTextStyle
Set italicOff = ses.CreateRichTextStyle()
italicOff.Italic = False

Dim header As NotesRichTextStyle
Set header = ses.CreateRichTextStyle()
Dim color As NotesColorObject
Set color = ses.CreateColorObject
' find standard Notes color closest to desired color.
Call color.SetRGB(153, 51, 0) ' dark reddish brown.
header.Notescolor = color.NotesColor
header.Effects = EFFECTS_SHADOW
header.Fontsize = 20
' use the Times New Roman font for headings.
header.NotesFont = rtf.GetNotesFont("Times New Roman", True)

Dim normal As NotesRichTextStyle
Set normal = ses.CreateRichTextStyle()
normal.Bold = False
normal.Italic = False
normal.NotesFont = FONT_HELV

‘ Don’t need GetNotesFont for the default fonts...
normal.Notescolor = COLOR_BLACK
normal.FontSize = 10
normal.Effects = EFFECTS_NONE

rtf.AppendStyle header
rtf.AppendText "Introduction"
rtf.AddNewline 1, True
rtf.AppendStyle normal
rtf.AppendText "We are here today to discuss "
rtf.AppendStyle italicOn
rtf.AppendText "blog"
rtf.AppendStyle italicOff
rtf.AppendText "."
rtf.AddNewline 1, True
rtf.AppendStyle header
rtf.AppendText "What is "
rtf.AppendStyle italicOn
710 Domino Designer 6: A Developer’s Handbook

rtf.AppendText "blog"
rtf.AppendStyle italicOff
rtf.AppendText "?"
rtf.AddNewline 1, True
rtf.AppendStyle normal
rtf.AppendText "Opinions vary. Some say it's one thing, some another. “ _
& “But everybody agrees it's tasty..."

...

To set the color of text, use the NotesRichTextStyle.NotesColor property. You
cannot use any color you like; you must choose from among 241 standard colors
(numbered from 0 to 240) in the Notes palette.

To help you choose among the available colors, LotusScript gives you names for
the 16 “system” colors. For instance, in the example we use COLOR_BLACK to
set the text color to black; COLOR_BLACK has value 0. You can find a table of
these constants in the Domino Designer help database (look up
NotesColorObject in the index).

If you don’t want one of the 16 system colors, the NotesColorObject class can
help you choose the palette color that’s closest to what you want. As we did in
this example, you can create a NotesColorObject variable, provide the desired
values for red, green, and blue levels, and use the NotesColor property to find the
number of the palette color that’s closest to that. You can also use the
NotesColorObject class to set the exact RGB color for table backgrounds and
section bars.

When selecting a font for your text, you also must specify a number. You can
select the system “default” fonts by using the constant FONT_HELV for Default
Sans Serif, FONT_ROMAN for Default Serif, or FONT_COURIER for Default
Monospace.5 If you want to use a specific font instead, you must use
NotesRichTextItem.GetNotesFont to request that font be assigned a number
code. You can then use that number code to use that font. In this example, we
used GetNotesFont to ask that the “Times New Roman” font be given a number.
This number will only work for the document it’s requested in. If you write an
agent that processes multiple documents and creates rich text in each, you’ll
need to call GetNotesFont for each document.

5 It’s a little confusing that the constant names don’t match the font names very well. In Notes 4 they
matched, and the old constants were retained for backward compatibility.
 Chapter 15. Rich text programming 711

Figure 15-6 Output of text style example

Some designers take the approach of having just one NotesRichTextStyle object
and using it every time they want to change the style. The following example
illustrates this.

Example 15-4 Using a single style object for all formatting

Set style = ses.CreateRichTextStyle()
style.Bold = True
rtf.AppendStyle style
rtf.AppendText “Report date: ”
style.Bold = False
rtf.AppendStyle style
rtf.AppendText Cstr(Today)

Either way works; use whichever one seems best to you.

Using paragraph styles
Another style class is used to control paragraph spacing and indentation. The
NotesRichTextParagraphStyle applies to an entire paragraph of text. Because it
doesn’t make sense to apply a paragraph style change in the middle of a
paragraph, Notes will automatically insert a paragraph break whenever you call
NotesRichTextItem.AppendParagraphStyle. When you switch paragraph styles,
use AppendParagraphStyle instead of AddNewLine.

For the next example, we took the earlier “blog” example and added two
NotesRichTextParagraphStyle objects; one for section headers and one for the
text within the sections. We also still need the NotesRichTextStyle objects from
the earlier example, to control the appearance of characters. When changing
from header to normal text or vice versa, the program calls AppendStyle and
AppendParagraphStyle. The order doesn’t matter.

Example 15-5 Set paragraph style (from “Rich Text Creation\3. Paragraph styles” agent)

...
Dim headerPar As NotesRichTextParagraphStyle
Set headerPar = ses.CreateRichTextParagraphStyle()
headerPar.SpacingAbove = SPACING_ONE_POINT_50
712 Domino Designer 6: A Developer’s Handbook

Dim normalPar As NotesRichTextParagraphStyle
Set normalPar = ses.CreateRichTextParagraphStyle()
normalPar.LeftMargin = RULER_ONE_INCH * 1.5

' indent normal paragraphs an extra half inch.
normalPar.FirstLineLeftMargin = RULER_ONE_INCH * 1.5

rtf.AppendStyle header
rtf.AppendParagraphStyle headerPar
rtf.AppendText "Introduction"
rtf.AppendParagraphStyle normalPar
rtf.AppendStyle normal
rtf.AppendText "We are here today to discuss "

...

With this you could produce a nicely formatted report. Using the
NotesRichTextParagraphStyle.SetTab method, you could also set tab stops and
use these to line up columns of text.

Figure 15-7 Output of paragraph style example

Adding doclinks
To insert a link to a Notes document, view, or database, use
NotesRichTextItem.AppendDocLink. You can make the link display as an icon, or
as text that you specify.

There’s no way to programmatically create a URL link, popup text, or other
hotspot.

For an example of adding a doclink to your rich text output, refer to , “Example:
Scan for invalid doclinks” on page 720.

Adding sections
New in Notes 6, you can programmatically add a collapsing section to your rich
text. There are two calls you must make for each section:
NotesRichTextItem.BeginSection and NotesRichTextItem.EndSection. Any other
 Chapter 15. Rich text programming 713

thing you add in between these two calls becomes the contents of the section. As
the example shows, it’s even possible to nest sections inside other sections.

Example 15-6 Partial code of “Rich Text Creation\4. Nested sections” agent

...
Dim header As NotesRichTextStyle
Set header = ses.CreateRichTextStyle()
header.Italic = True
header.NotesFont = FONT_ROMAN
header.Bold = True
header.Fontsize = 12

rtf.AppendText "Example of nested section creation"
rtf.BeginSection "Dogs", header
rtf.AppendText "Here's what Science knows about dogs. There are two types."
rtf.BeginSection "Big Dogs", header
rtf.AppendText "Big dogs are usually friendly."
rtf.EndSection ' end of "Big Dogs"
rtf.BeginSection "Yippy Dogs", header
rtf.AppendText "Little yippy dogs are aggressive and annoying."
rtf.EndSection ' end of "Yippy Dogs"
rtf.EndSection ' end of containing section "Dogs"
rtf.AppendText "Some text to follow the section."

...

Figure 15-8 Output of section creation example.

There’s no way to specify the indentation of the section header, as you might
want to do when nesting sections. However, you can use a
NotesRichTextParagraphStyle to indent the text inside a section (we didn’t do
that in this example).

Adding rich text copied from elsewhere
If you’ve been following along with the examples, it may have occurred to you that
it’s a lot easier to create rich text that looks exactly the way you want it to by
typing it in a Notes client, instead of writing a lot of code.
714 Domino Designer 6: A Developer’s Handbook

There is a way to fetch rich text from a document or form and append it to the end
of the rich text you’re building. This functionality is available in Notes R5 and later.

If the rich text can be the same each time you use it, use a field in a profile
document or other document. Use NotesDocument.GetFirstItem to get the rich
text value from the profile, then NotesRichTextItem.AppendRTItem to add it to
another rich text field in a document you’re working on. This might be a good way
to create a static report header, for instance.

If you need to have variable data inside the rich text, design a form that looks like
what you want and place fields at the points where you want to add variable data.
Figure 15-9 shows a form designed to serve as one row in a sales report. To
make use of it:

� Create a new NotesDocument object in memory. This document will never be
saved to disk; it’s just to help you in creating the rich text you want. This is
your “row document;” it should not be the same document as the one
containing the rich text field you’re writing.

� Assign values to the fields that appear on the “row form.”

� Use NotesDocument.RenderToRTItem to take a “snapshot” of the row and
append it to your rich text under construction.

Figure 15-9 Form used in generating a report row

The following example demonstrates both techniques; it reads static information
from a profile document for a report header,6 and it uses the form in Figure 15-9
repeatedly, once for each row of the report, to fill in the report data. As before,
code similar to previous examples is left out.

Example 15-7 Partial code of “Rich Text Creation\5 . Sales report” agent.

' read report header field from profile document.
Dim profile As NotesDocument
Dim headerFromProfile As Variant ' rich text item
Set profile = db.GetProfileDocument("MasterProfile")
Set headerFromProfile = profile.GetFirstItem("SalesReportHeader")
' Insert the static report header into the RTF.
rtf.AppendRTItem headerFromProfile

6 The term “header” here refers to a banner appearing just once, at the beginning of the report. Print
headers, which appear on every page of a printout, are a property of the form, not part of the rich text
of the document.
 Chapter 15. Rich text programming 715

Dim rowDoc As notesdocument
Set rowDoc = db.CreateDocument()
' temporary "row document" holds data from one report row at a time.
rowDoc.ReplaceItemValue "Form", "SalesReportRow"

...
For i = 0 To Ubound(reportrows)

...
' Fill in a temporary "row document" with one row's worth of data.
rowDoc.ReplaceItemValue "RegionName", rowArray(0)
rowDoc.ReplaceItemValue "Sales", Clng(rowArray(1))
rowDoc.ReplaceItemValue "Profitability", Clng(rowArray(2))
rowDoc.ReplaceItemValue "Integrity", rowArray(3)
rowDoc.ReplaceItemValue "Genius", Cdbl(rowArray(4))
' Take a "snapshot" of the row document -- the rich text
' representing what it would look like on screen if it were opened.
' Add that snapshot to the end of the report.
rowDoc.RenderToRTItem rtf

Next

Figure 15-10 Sales report output screen

This technique gives you a great deal of control over the appearance of your rich
text. A side benefit to using this approach, besides having to write less code, is
that it lets a user without Domino Designer edit the profile document to customize
the appearance of the report header. Using advanced techniques described in
the following sections, you can also avoid the use of a “row form” and have the
format of a report row also set in the profile document.

Restriction: This technique may not be appropriate for very long reports, as
Notes will have trouble displaying a document with more than 1000 tables in it.
716 Domino Designer 6: A Developer’s Handbook

Adding a table
To add a table to a rich text item, use NotesRichTextItem.AppendTable. This lets
you specify:

� The number of rows and columns (you can add or remove rows later).

� Optionally, an array of tab labels—one for each row—in case you want to
make a tabbed table.

� A left indent setting for the table as a whole.

� Optionally, an array of paragraph styles, one for each column. The left and
right margin settings on these control the cell widths to create a fixed-width
table.

There are some things missing here. There’s no way to select the thickness and
style of cell borders, nor to merge cells, to name a couple. You can select the cell
background colors to a limited extent (we’ll see how later). This function is
intended for a very basic style of table, something you might use to create a
report of data in columns. If you need to get fancy, refer to the previous section
for a discussion of creating your table using the Notes or Designer UI and
copying it into your rich text.

Adding a table is a good start, but in most cases you’ll also need to add data into
the table cells. That requires a shift from what we’ve been doing, since the new
information is no longer being added at the end of the rich text value. To create a
table and fill in values, we’ll have to reposition the cursor from its default position
at the end of the rich text, to elsewhere within the rich text, so new elements are
added somewhere other than at the end. This brings us to our next topic.

15.6.3 Navigating and inserting into rich text
All the functionality discussed in this section is new in Notes 6. Notes 5 doesn’t
have any way to insert or revise rich text—only append it. This section shows you
how to locate text and other elements within an existing rich text field, delete
them, change their properties, or insert text or other elements before, after, or
inside them.

To find elements within the rich text, use two new classes:

� NotesRichTextNavigator lets you position to a particular place in the field
and search for elements of specified types. Think of it as a bookmark or
cursor that keeps track of a spot in the rich text for you. Among other things,

Restriction: Tables in Notes are limited to 255 rows. If you need more rows,
you will need to create additional tables.
 Chapter 15. Rich text programming 717

you can use it to set the point in the field where things you add will be
inserted.

� NotesRichTextRange represents a consecutive subset of the rich text. Think
of it as a “highlighted” area in the rich text, which you can treat as a group. For
instance, you can delete everything in the range, or set all of it to a new font,
in a single operation. This object also lets you read text from the “selected”
area, and find and replace strings.

While it’s helpful to think of the navigator as a sort of insertion cursor and a range
as a selection, there’s one important difference: you can have more than one
navigator and more than one range at the same time in the same piece of rich
text, all at different positions within the field.

Once you have a navigator, you can use it to scan for “elements” that appear in
the rich text. You can get information about the elements you find—and change
their attributes—by using one of the classes that describes a particular type of
element:

� NotesRichTextDoclink describes a document, view, or database link. Its
attributes include the server, view ID, and document ID that the link is to, a
comment, and the text the user clicks to activate the link.

� NotesRichTextSection describes a collapsing section in the rich text. Using
this object you can read and set the section title, header style (font, color,
etcetera), and bar color.

� NotesRichTextTable describes a table. You can read and set the background
color, an alternate color, and tab labels (for a tabbed table). You can choose
among several patterns for the background and alternate color (alternating
rows, alternating columns, top row one color and the rest of the table another
color, and so forth). You can read the number of rows and columns, and add
and delete rows.

� NotesEmbeddedObject represents an OLE object or file attachment.7 You
can read the OLE object properties and set some of them, and with file
attachments you can detach them to disk. Unlike the other elements listed,
you can access these directly from the NotesRichTextItem using the
EmbeddedObjects property. The others can only be located through a
navigator. You should use a navigator for embedded objects if you need to
locate them in relation to other elements in the rich text, for instance if you
want to make sure that an embedded object is the first thing in the field.

Elements not listed above cannot be processed with LotusScript. There are no
classes for images, text pop-ups, URL links, or hotspot buttons, to name just a
few. If you need to work with them, you’ll have to either use the API or do XML

7 The NotesEmbeddedElement class ia available in Notes 5.0. The new Notes 6 functionality is the
ability to locate it with a NotesRichTextNavigator.
718 Domino Designer 6: A Developer’s Handbook

export and import. However, if you don’t need to locate these elements in the rich
text or read their properties, but just want to create rich text that includes them,
you have other choices, as described in “Adding rich text copied from elsewhere”
on page 714 and “Example: Using Import to add a table” on page 737.

Finding an element with a navigator
To locate something you’re interested in within a rich text item—be it text, a table,
or whatever—you first need a NotesRichTextNavigator. Use the
NotesRichTextItem.CreateNavigator method to get one. A navigator is like a
cursor: it points somewhere within the rich text. Using its methods, you can tell it
where you want to point, or get information about the element it’s pointing to.

Table 15-2 Methods of the NotesRichTextNavigator class (new in version 6.0)

Method name Description

FindFirstElement Moves the current position to the first element of a specified
type in a rich text item. The type can be one of the four
elements listed previously (doclink, section, table, or
OLE/attachment), plus you can search for paragraphs, table
cells, or “text runs” (sequences of characters that share the
same character style).

FindLastElement Moves the current position to the last element of a specified
type in a rich text item.

FindNextElement Moves the current position to the next element of a specified
type after the current position.

FindNthElement Given a counter n, sets the position to the nth occurrence of the
specified type.

FindFirstString Searches for the first occurrence of a string, and positions the
navigator to the beginning of the string.

FindNextString Searches for the next occurrence of a string, starting at the
current position, and repositions the navigator to the beginning
of that string.

GetElement Returns the element at the current position. The navigator must
be positioned on one of the four element object types. The
function returns an object of the appropriate type.

GetFirstElement Returns the first element of a specified type. This combines the
functions of FindFirstElement and GetElement. The type
specified must be one of the four element object types.

GetLastElement Same as FindLastElement plus GetElement.

GetNextElement Same as FindNextElement plus GetElement.
 Chapter 15. Rich text programming 719

Use GetFirstElement and GetNextElement to loop through all the rich text
elements of a particular type. GetLastElement is most useful for backing up to
insert elements into a table that you just added to the end of the rich text. The
other methods are useful for positioning the endpoints of a NotesRichTextRange.

Using the navigator, you can get complete information about the four object
element types, and using those objects you can change the properties of those
rich text elements. You need the NotesRichTextRange to read text and text
styles, or find and replace text. This is covered in a later section.

Example: Scan for invalid doclinks
A website manager wants to be able to regularly scan a Domino database on her
website for doclinks that are either broken (meaning they point to something that
no longer exists), or point to servers or databases that Web browser users don’t
have access to. The report lists all documents that have problem links, includes a
doclink to each document, and lists which links have a problem and what the
problem is.

Figure 15-11 Output of Agent “Rich Text Analysis / 1. Check for broken links”

GetNthElement Same as FindNthElement plus GetElement.

SetPosition Sets the current position to point to a specified element, which
must be one of the four object element types.

SetPositionAtEnd Sets the current position at the end of a specified element in a
rich text item. The element must be one of the four element
object types.

SetCharOffset Moves the current position forward or backward a specified
number of characters.

Clone Creates another NotesRichTextNavigator object with the same
position as the current one. This is different from just copying
the reference using “Set nav2 = nav1”; the cloned copy is a new
object, not just another reference to the same object. The clone
can be changed to point to a different location from the original.

Method name Description
720 Domino Designer 6: A Developer’s Handbook

The sample output shows that the second and third link in one document are
incorrect, as is the first link in another document. If you run this agent, you’ll get
different results because you don’t have access to the same servers, so all links
will appear to be broken.

Example 15-8 shows how to use a NotesRichTextNavigator to find doclinks in the
document rich text, and the NotesRichTextDoclink class to get information about
the objects. As before, portions of this code that are the same as previous
examples are left out. The code is modular, with two utility functions,
FindDatabase and LinkIsValid, defined at the end.

Example 15-8 Agent “Rich Text Analysis / 1. Check for broken links”

...
Dim illegalCount As Long
reportTitle = "Invalid Doclink Report for " & Format(Now, "Long Date")
reportBody.AppendText reportTitle
Dim allowedDBIDs, allowedServers

' The MasterProfile profile document contains a list of
' database IDs of databases to which users are allowed to link,
' and a list of servers that may appear in the server hint. Use
' these to check each link to determine whether it's legal.
Set profile = db.GetProfileDocument("MasterProfile")
allowedDBIDs = profile.GetItemValue("AllowedDBIDs")
allowedServers = profile.GetItemValue("AllowedServers")

Set col = db.UnprocessedDocuments ' = all docs that use the Document form.
Set doc = col.GetFirstDocument()
Do Until doc Is Nothing

' A link is considered illegal if the server it points to is not in our
' list of servers, or if the database replica ID isn't in the
' allowed list, or if the element it points to no longer exists.
Set body = doc.GetFirstItem("Body")
Dim firstNotice As Boolean, message As String, linkCount As Long
firstNotice = True
linkCount = 0
Set rtnav = body.CreateNavigator()
Set link = rtnav.GetFirstElement(RTELEM_TYPE_DOCLINK)
Do Until link Is Nothing

linkCount = linkCount + 1
message = ""
Set link = rtnav.GetElement()
If Not LinkIsValid(link) Then

message = ", link is broken"
End If

' Even if link is broken, still check that it’s a legal server & DB.
If Isnull(Arraygetindex(allowedServers, link.ServerHint)) Then
 Chapter 15. Rich text programming 721

' disallowed server
Dim tmpName As New NotesName(link.ServerHint)
message=message & {, illegal server "} & tmpName.Abbreviated & {"}

End If
If Isnull(Arraygetindex(allowedDBIDs, link.DBReplicaID)) Then

message=message & {, illegal database "} & link.DBReplicaID & {"}
Dim targetDb As NotesDatabase
Set targetDb = findDatabase(link)
If Not targetDb Is Nothing Then

message = message & { (} & targetDb.Title & {)}
End If

End If

If message <> "" Then
If firstNotice Then

' first message about doc -- doublespace and give link to doc.
reportBody.AddNewline 2, True
reportBody.AppendDocLink doc, doc.Subject(0)
firstNotice = False
illegalCount = illegalCount + 1

Else
' there's already a message about the same doc -- singlespace.
reportBody.AddNewline 1, True

End If
reportBody.AddTab 1
reportBody.AppendText "#" & linkCount & ": " & Mid$(message, 3)

End If
Set link = rtnav.GetNextElement(RTELEM_TYPE_DOCLINK)

Loop
Set doc = col.GetNextDocument(doc)

Loop

' finish report by telling how many documents had errors.
reportBody.AddNewline 2, True
reportBody.AppendText illegalCount & _

" documents contained invalid doclinks."
...
Function LinkIsValid(link As NotesRichTextDoclink) As Boolean

' Given a doclink object, this function uses the properties of the
' doclink to find the database, view or document that the doclink
' points to. Return True if the element is found, else False.
Dim targetDB As NotesDatabase
Set targetDB = FindDatabase(link)
If targetDB Is Nothing Then
' database was not found.

LinkIsValid = False
Else

' found the database. Does the include view and document information?
Dim targetDoc As NotesDocument
722 Domino Designer 6: A Developer’s Handbook

LinkIsValid = True ' until we know it's not.

' if the link points to a view, make sure the view exists
' (note: even if the link is to a document, it will mention the
' view the document is in and we'll make sure the view's there).
On Error Goto noGood
If link.ViewUnID <> "00000000000000000000000000000000" Then

Set targetDoc = targetdb.GetDocumentByUNID(link.ViewUnID)
' will cause an error event if the doc doesn't exist.

End If

If link.DocUnID <> "00000000000000000000000000000000" Then
Set targetDoc = targetDB.GetDocumentByUNID(link.DocUnID)

End If
End If
Exit Function

noGood:
' error trying to follow a doclink -- link is broken.
LinkIsValid = False
Exit Function

End Function

Function FindDatabase(link As NotesRichTextDoclink) As NotesDatabase
' Given a doclink, find the database it points to.
' If no such database, return Nothing.
Static databasesById List As notesdatabase
' a cache of databases sorted by ID, to not look up the same one twice.

Dim key As String
key = link.ServerHint + ":" + link.DBReplicaID
If Iselement(databasesById(key)) Then

Set FindDatabase = databasesById(key)
Else

Dim targetDB As New NotesDatabase("", "")
If targetDB.OpenByReplicaID(link.ServerHint, link.DBReplicaID) Then

Set FindDatabase = targetDB
Else

Set FindDatabase = Nothing
End If
Set databasesById(key) = FindDatabase

End If
End Function

The list of valid servers and database replica IDs is stored in a profile document
for ease of maintenance—the database manager can change the list without
using Domino Designer.
 Chapter 15. Rich text programming 723

Since the doclink properties are read-write, it’s fairly simple to write an agent to
automatically correct an incorrect link. For instance, an agent could scan for
doclinks that point to a server that’s been retired, and change the “server hint” to
a different server name. This is done by just setting the ServerHint property of
the doclink object, and then saving the document. The sample agent “Rich Text
Editing\1. Correct links to wrong server” demonstrates this.

Example: Creating a table and filling in data
Now that we know how to create a navigator and set its position, we can create a
table and fill in the contents by positioning to each cell in turn. Figure 15-12
shows the report we’d like to create.

Figure 15-12 Output of agent “Rich Text Editing\1. Fill in table“

This table uses different fonts within the table cells, which is easy to do with
NotesRichTextStyle. The agent also controls the widths of table columns, and the
alignment of data within the cells, by specifying a NotesRichTextParagraphStyle
for each column. Since there are four columns, the agent creates a four-element
array of NotesRichTextParagraphStyle objects. The left and right margin settings
control the width of the cell, and you can also specify other properties; in this
case, we chose to make the three numeric columns right-aligned.

As before, portions of the code similar to earlier examples are omitted. The key
points to note for adding data into a table are:

� Create a NotesRichTextNavigator so you can control the text insertion point.

� Use Find...Element methods to locate each table cell in turn. You can’t use
GetElement here because there’s no class corresponding to a table cell, so
there’s nothing to get.

� Use NotesRichTextItem.BeginInsert to start entering information into the cell.

� Use NotesRichTextItem.EndInsert when done with that cell.

Example 15-9 Partial code of agent “Rich Text Creation\1. Fill in table”

...
Dim rtf As NotesRichTextItem

...
' Setup text styles used in the document.
Dim columnHeaderStyle As NotesRichTextStyle
Set columnHeaderStyle = ses.CreateRichTextStyle()
columnHeaderStyle.Bold = True
724 Domino Designer 6: A Developer’s Handbook

columnHeaderStyle.Fontsize = 10
columnHeaderStyle.NotesFont = rtf.GetNotesFont("Gill Sans", True)

Dim dataStyle As NotesRichTextStyle
Set dataStyle = ses.CreateRichTextStyle()
dataStyle.Bold = False
dataStyle.Fontsize = 10
dataStyle.NotesFont = FONT_ROMAN

' Define an array of paragraph styles, which will
' set the width and alignment of each table column.
Dim i As Integer
Dim columnStyles(0 To 3) As NotesRichTextParagraphStyle
For i = 0 To 3

Set columnStyles(i) = ses.CreateRichTextParagraphStyle
columnStyles(i).LeftMargin = 0 ' position relative to cell border.
columnStyles(i).FirstLineLeftMargin = 0

Next
columnStyles(0).RightMargin = 3.5 * RULER_ONE_CENTIMETER
columnStyles(1).RightMargin = 1.5 * RULER_ONE_CENTIMETER
columnStyles(1).Alignment = ALIGN_RIGHT
columnStyles(2).RightMargin = 2.5 * RULER_ONE_CENTIMETER
columnStyles(2).Alignment = ALIGN_RIGHT
columnStyles(3).RightMargin = 2 * RULER_ONE_CENTIMETER
columnStyles(3).Alignment = ALIGN_RIGHT

Dim headerColor As NotesColorObject
Dim dataColor As NotesColorObject
Set headerColor = ses.CreateColorObject
Call headerColor.SetRGB(198,255,148)
Set dataColor = ses.CreateColorObject
Call dataColor.SetRGB(207,243,255)

' fetch the fake data to use in the report.
...

' create an empty table, 1+the number of data rows, 4 columns,
' of fixed widths defined in the columnStyles array.
Call rtf.AppendTable(2 + Ubound(sampleData), 4, , , columnStyles)

' create navigator to position the text insertion point within table cells.
Dim nav As NotesRichTextNavigator
Set nav = rtf.CreateNavigator()

' Get an object describing the table.
Dim table As NotesRichTextTable
nav.FindLastElement RTELEM_TYPE_TABLE
Set table = nav.GetElement
 Chapter 15. Rich text programming 725

' Set table to use different color for the top and left column.
table.Style = TABLESTYLE_LEFTTOP
table.SetColor headerColor
table.SetAlternateColor dataColor

rtf.AppendStyle columnHeaderStyle ' this will be in effect until changed.
nav.FindNextElement RTELEM_TYPE_TABLECELL
rtf.BeginInsert nav
rtf.AppendText "Sample ID"
rtf.EndInsert
nav.FindNextElement ' defaults to last thing searched for
rtf.BeginInsert nav
rtf.AppendText "Density"
rtf.EndInsert
nav.FindNextElement
rtf.BeginInsert nav
rtf.AppendText "Melting Point"
rtf.EndInsert
nav.FindNextElement
rtf.BeginInsert nav
rtf.AppendText "Hardness"
rtf.EndInsert

' Next, place the data into the cells.
Dim column
rtf.AppendStyle dataStyle
For i = 0 To Ubound(sampleData)

column = Split(sampleData(i), ",")
For k = 0 To 3

nav.FindNextElement
rtf.BeginInsert nav
rtf.AppendText(column(k))
rtf.EndInsert

Next
Next

...

In an earlier example, we used a NotesColorObject to find out what Notes
system color was closest to a desired color. Here, we’re using NotesColorObject
to set the table background colors. Unlike with text, we do not have to choose a
color from the Notes palette; the table background colors are the exact RGB
values we specified.

There’s not a way to select cells and merge them, as you can in the Notes UI.
However, you can “nest” a table inside of a table cell. Once you call BeginInsert,
you can insert anything, including another table, in the cell. Or, you could copy
the table from a profile document, as shown in the previous example “Adding rich
text copied from elsewhere” on page 714, and add rows to make it the size you
726 Domino Designer 6: A Developer’s Handbook

want. The sample agent “Rich Text Creation\2. Fill in copied table” demonstrates
this approach (we won’t describe it in greater detail here).

Example: File attachment size limit
Consider the case where a database administrator wants to limit the size of file
attachments on the Document form to 200K bytes, wants to limit attachments to
a maximum of one per document, and wants to prohibit any OLE objects. The
user will get an error when trying to save the document if they break these rules.

Unlike previous examples, this is not done with an agent, but with the form
Querysave event. If not for the OLE object test, it could be done by using
@AttachmentLengths in a field’s Input Validation formula.8 Using LotusScript lets
us check for OLE objects, and put the cursor in the rich text field if there’s a
problem with an attachment.

Figure 15-13 Output of Querysave to test file attachment size

The NotesRichTextItem.EmbeddedObjects property returns an array listing all
attachments, OLE objects, and OLE links. The elements of this array are
NotesEmbeddedObject objects. This functionality is available in Notes R5 also.

Example 15-10 Querysave code on Document form.

Sub Querysave(Source As Notesuidocument, Continue As Variant)
On Error Goto trap
Source.Refresh True ' update rich text items in memory.
Dim doc As NotesDocument
Dim body As Variant
Dim nav As NotesRichTextNavigator
Set doc = Source.Document
Set body = doc.GetFirstItem("Body")

' The next statement will cause an error if there are no attachments.
' That's OK because we trap the error and exit, allowing the save.
Forall object In body.EmbeddedObjects

8 Not in the Body field, however, since rich text fields don’t have validation formulas; you would have
to put it in a different field.
 Chapter 15. Rich text programming 727

If object.Type <> EMBED_ATTACHMENT Then
Msgbox "No OLE objects allowed.", 0, "Validation Failure"
Continue = False

Elseif object.FileSize > 200000 Then
Msgbox "File attachment may not exceed 200KB.", 0, _

"Validation Failure"
Continue = False

End If
End Forall
If Ubound(body.EmbeddedObjects) > 0 Then

Msgbox "Only one attachment per document, please.", 0, _
"Validation Failure"

Continue = False
End If

If Not Continue Then
' put the cursor in the rich text field if it's not already there.
If Source.CurrentField <> "Body" Then Source.GotoField "Body"

End If
Exit Sub

trap: ' if validation error; Notes already printed a message, so exit.
' if there are no attachments, saving is OK, so exit.
Exit Sub

End Sub

Instead of the EmbeddedObjects property, you could use a
NotesRichTextNavigator to loop through all the embedded objects and
attachments. This is what we did with doclinks in the previous section. However,
when working with OLE objects and attachments, using EmbeddedObjects is
generally simpler.

You have to use the NotesRichTextNavigator to locate attachments if you care
about the position of the attachment relative to other parts of the rich text. For
instance, if you wanted to test whether an attachment was inside of a table cell,
you would use a NotesRichTextRange and NotesRichTextNavigator to search the
table for it.

15.6.4 Using a NotesRichTextRange to read text or limit a search
The NotesRichTextNavigator class is useful for finding “things” within the rich
text—tables, sections, attachments, and doclinks. But, to read or modify text and
text styles in the document, you need a NotesRichTextRange object. Create a
NotesRichTextRange using the NotesItem.CreateRichTextRange method. The
following tables list the methods and properties of the range object.
728 Domino Designer 6: A Developer’s Handbook

Table 15-3 Properties of the NotesRichTextRange class (new in version 6.0)

Table 15-4 Methods of the NotesRichTextRange class (new in version 6.0)

Property Description

Type
Integer

A numeric code indicating the type of object that’s
at the beginning of the range.
Type returns 0 (unknown) for the “default” range
(the entire field). You can’t use this to tell what’s the
first thing in the field.

Style
NotesRichTextStyle

A description of how the first text in the range is
formatted.

TextRun
String

The text at the beginning of the range, up to the first
text style change or paragraph break.

TextParagraph
String

The text at the beginning of the range, up to the first
paragraph break.

Navigator
NotesRichTextNavigator

A navigator that’s restricted to the range begin and
end points. This is useful in narrowing the scope of
a search to less than the entire field.

Method name Description

Clone Make a copy of the range; returns a new NotesRichTextRange
which you can assign to another variable. This is different from
merely copying the variable with an “=” assignment; a copy
made with Clone can have different begin and end points than
the original, whereas “=” just makes another reference to the
same object.

FindAndReplace Search for text and replace it with other text. Flags let you
select case and accent sensitivity, and “replace one” versus
“replace all”.

Remove Deletes everything in the range.

Reset Restores the range to its default start and end points (the
entire rich text item).

SetBegin Set the beginning point of the range to an element or
navigator.

SetEnd Set the end point of the range to just before a given element
or navigator.

SetStyle Change the text style of everything in the range. There’s not a
way to change the paragraph style of existing text.
 Chapter 15. Rich text programming 729

You don’t need a range to just test whether the rich text contains a particular
word. For that, use NotesRichTextItem.GetFormattedText and search for the
word you want. You also don’t need it to insert new data within the rich text, as we
saw in “Example: Creating a table and filling in data” on page 724.

You do need to use a range to remove or change existing text, or to read text
from a particular location within the field.

For instance, suppose you want to find a word and replace it with a different
word, but only if it appears in a table. Use a navigator to locate the beginning of
the table (using FindFirstElement or FindNextElement method, for instance). Use
SetBegin to make that the beginning of the range. Use the navigator to locate the
end of the table (SetPositionAtEnd). Use SetEnd to make that the end of the
range. Then use FindAndReplace to swap one word for another.

When you use NotesRichTextItem.CreateRange to create a new range, or when
you “reset” the range with the Reset method, the range refers to the entire rich
text item. However, this range doesn’t behave quite the same as a range whose
begin and end points have been specified using SetBegin and SetEnd. The Type
property is 0 (“range not explicitly defined”). There’s no way to get the first
element in such a range; you can only get the first element of a type that you
specify; the first text, first table, etcetera. Without any idea what’s in the field, you
cannot process the contents of the entire field from front to end.

Example: Search and replace text
The agent “Rich Text Editing\3 - Find and Replace Text” asks the user to enter a
search string and a replacement string, and select whether the search is case-,
accent-, or pitch-sensitive. (Pitch marks are used with some Asian languages to
indicate vocal tone.)

Figure 15-14 Dialog from “Rich Text Editing\3 - Find and Replace Text” agent
730 Domino Designer 6: A Developer’s Handbook

The agent changes all occurrences of the search string to the replacement string
in the Body field of the selected documents.

Example 15-11 Agent “Rich Text Editing\3.Find and Replace Text“

...
Dim ses As New NotesSession
Dim ws As New NotesUIWorkspace
Dim db As NotesDatabase
Dim dialogdoc As notesdocument
Dim searchFor As String, replaceWith As String, flags As Long
Dim result As Integer, count As Integer
Dim col As NotesDocumentCollection
Dim doc As NotesDocument
Dim body As NotesRichTextItem
Dim range As NotesRichTextRange

Set db = ses.CurrentDatabase
Set dialogdoc = db.CreateDocument()

' Display a dialog for user to enter search string and replacement string.
result = ws.DialogBox("FindAndReplace", True, True, False, False, False, _

False, "Search and Replace Selected Docs", dialogDoc, True)

If result Then ' user pressed OK in the dialog.
searchFor = dialogDoc.GetItemValue("SearchString")(0)
replaceWith = dialogDoc.GetItemValue("ReplaceString")(0)
flags = dialogDoc.GetItemValue("Flags")(0) Or RT_REPL_ALL
' RT_REPL_ALL replaces all; default replaces only first occurrence.
Set col = db.UnprocessedDocuments
Set doc = col.GetFirstDocument
Do Until doc Is Nothing

Set body = GetRichTextField(doc, "Body")
Set range = body.CreateRange
count = range.FindAndReplace(searchFor, replaceWith, flags)
If count <> 0 Then

' a replacement was made.
doc.Save False, False, False

End If
Set doc = col.GetNextDocument(doc)

Loop
End If

Example: Change text style of certain paragraphs
Consider a manual that has been stored as documents in a Notes database, and
now the content manager wants to find all the paragraphs that begin with “Note:”
and italicize them.
 Chapter 15. Rich text programming 731

The agent to accomplish this task (“Rich Text Editing\4. Highlight Note
Paragraphs”) uses a NotesRichTextNavigator to scan the rich text field paragraph
by paragraph, finding those that begin with “Note:”. When one is found, the agent
creates a range that includes only that paragraph. It then uses SetStyle on the
range to change the text to italics (leaving its other attributes unchanged).

Example 15-12 Partial code of “Rich Text Editing\4. Highlight Note Paragraphs” agent

Dim italicsOn As NotesRichTextStyle
Set italicsOn = ses.CreateRichTextStyle
italicsOn.Italic = True

...
Set body = doc.GetFirstItem("Body")
found = False
Set range = body.CreateRange
Set nav = body.CreateNavigator
Set nextPar = nav.Clone
flag = nav.FindFirstElement(RTELEM_TYPE_TEXTPARAGRAPH)
While flag

range.SetBegin nav
nextPar.SetPosition nav
flag = nextPar.FindNextElement(RTELEM_TYPE_TEXTPARAGRAPH)
If Left(range.TextParagraph, 5) = "Note:" Then

found = True
If Not flag Then

' this is the last paragraph. Let our range go to the end.
Set range = body.CreateRange
range.SetBegin nav

Else
' Not the last paragraph. Set range to end at next paragraph.
range.SetEnd nextPar

End If
range.SetStyle italicsOn

End If
nav.SetPosition nextPar

Wend

If found Then doc.Save False, False, False
...

15.6.5 Working with rich text in edit mode
As already noted, the classes in the previous sections work only in the back end.
If a document is open in edit mode, you can’t use these classes to fill in the
document’s rich text because there’s no way to make Notes recognize that the
back end rich text has changed and update it in the front end.
732 Domino Designer 6: A Developer’s Handbook

Actually, there is one way: you can save the document, close it, make your
changes, and re-open the document in edit mode. You generally don’t want to do
this because the user might have made changes they’re not ready to save, or left
a required field blank.

You can read information in edit mode using the back-end classes. To do this,
you have to first tell Notes to “refresh” the rich text fields using
NotesUIDocument.Refresh(True). Refer to “Example: File attachment size limit”
on page 727 for an example of this. This also has drawbacks. Refreshing a
document may make other fields change because their formulas are
recalculated, and also it will evaluate validation formulas and display validation
messages—for instance, that the user has left a required field blank—even
though they’re not trying to save the document. You can get around this by
carefully writing your validation formulas so that they only report an error when
the user is trying to save a document. For example, the following input validation
tests whether a field is blank, but doesn’t cause a failure if the document is only
being recalculated. The input validation formula is for a text field on a form, not for
a rich text field. You cannot write an input validation formula for a rich text field.

Example 15-13 Input Validation formula that only reports errors during save

@If(@IsDocBeingSaved & @ThisValue = ““;
@Failure(“You must enter a value for Rate of Plummet.”);
@Success

)

So what can you do in the front end to update rich text in a document the user is
editing? The NotesUIDocument class provides several methods that will help
with this; shown in Table 15-5. This is not a complete list of NotesUIDocument
methods—only those that have some use in working with rich text are shown.
None of these methods are new in version 6.0.

Table 15-5 Methods of NotesUIDocument (partial list)

Method name Description

Clear Erase the contents of the current field.

Copy Copy the current selection to the clipboard.

CreateObject Create an OLE object of a specified type.

Cut Cut the current selection to the clipboard.

DeselectAll Deselect the current selection.

FieldAppendText Add text to the end of a specified field.
 Chapter 15. Rich text programming 733

FieldClear Erase the contents of a specified field.

FieldContains Test whether a specified field contains a certain string.

FieldGetText Return the text that’s in a specified field.

FieldSetText Replace a field’s contents with text you provide. This is not
especially good with a rich text field because you don’t get to
format the text at all, and you overwrite any formatting,
tables, or other objects that were there before.

FindString Find the next occurrence of a string you provide, and makes
that the current selection.

GetObject If the rich text field contains an OLE object, this returns a
handle to the object. You can use this handle to send OLE
commands to the object. (Windows only)

GetSelectedText Returns the text in the selected area.

GotoBottom Moves the cursor to the bottom of the form. This is one way
to move the cursor to the end of your rich text field, if it’s the
last thing on the form.

GotoField Move the cursor into a specified field. The cursor ends up at
the beginning of the field.

Import Does the same thing as File / Import in the menu. You can
specify the type of file and filename to import. The new
information is inserted at the current cursor position.
There’s a long list of files types you can choose from, but the
following are especially useful for rich text:
� HTML File
� GIF Image
� JPEG Image
� Other Image formats, which are used less often

InsertText Add text at the current cursor position.

Paste Paste from clipboard.

Refresh Used with an argument of True, this method copies updated
rich text information from the “front end” and makes it
available on the “back end”.

SelectAll Selects the entire contents of the current field. This will
cause an error if the field is empty, which you can trap with
an On Error statement.

Method name Description
734 Domino Designer 6: A Developer’s Handbook

Of special importance are the Import, Copy, and Paste methods. These methods
let you create complex rich text information elsewhere and insert it into the rich
text field in the document being edited. The other methods only let you add or
change text. The following examples address this.

In addition to the LotusScript methods identified in the table, there are several
macro commands and functions that are useful in working with rich text on the
front end. Many of them are just macro versions of the LotusScript methods.
However, here are some commands that do things for which there is no
corresponding LotusScript:

� @Command([EditInsertFileAttachment])
� @Command([EditInsertPageBreak])
� @Command([EditInsertPopup]) Note: You can’t supply the text of the

pop-up; the user is prompted to enter it with a dialog.
� @Command([EditInsertTable]) Note: You can’t specify the size of the

table; the user is prompted.
� @Command([EditLeft] ; count)
� @Command([EditRight] ; count)
� @Command([EditUp] ; count)
� @Command([EditDown] ; count)
� @Command([TextBold])
� @Command([TextItalic])
� @Command([TextUnderline])
� @Command([TextBullet] ; onOff) makes a bullet list
� @Command([TextNumbers] ; onOff) makes a numbered list
� @Command([TextCycleSpacing])
� @Command([TextAlign...]) Center, Left, Right, Full, None
� @Command([TextOutdent])
� @Command([TextSetFontColor] ; [color])
� @Command([TextSetFontFace] ; typeface)
� @Command([TextSetFontSize]; size)
� @Command([TextEnlargeFont])
� @Command([TextReduceFont])
� @Command([TextSpacing...]) Single, Double, OneAndAHalf
� @Command([TextNormal])
� @FontList Provides a list of fonts available on the Notes client. You can use

this function in LotusScript with an Evaluate statement.

Using these @Commands, you can write macro code that generates almost
anything you want in terms of formatted text. If you can get an empty table in your
rich text, you can also use the cursor movement commands (EditLeft and the
rest) to place the cursor inside the table cells, then use the other @Commands to
add your text.
 Chapter 15. Rich text programming 735

Example: Using Import to add an image
The NotesUIDocument.Import method accepts two string arguments: the file
type and file path. The “Add Picture” action on the Document form places the
cursor in the rich text field and imports a “gif” image.

It’s easy to import a file if you already have the file. The challenge in using the
Import method is how to get the file. In this case, we created an “Image Library”
view and documents in the sample database. Each document in this view
contains a file attachment, which must be a GIF or JPEG file. When the user
asks to add an image to their document, they get to choose from the image titles
displayed in the view.

The LotusScript code then has to extract the selected image file to the user’s
local hard disk. There’s no way to directly grab an attachment and place it into
the document the user is editing; to do anything with it, you have to first store it to
disk.

Once it’s detached into a local file, the code uses Import to insert it at the current
position within the rich text. It then calls “Kill” to delete the file from disk.

Except for Import, there’s no way to add an image to a rich text field unless the
image was already in a rich text field waiting to be copied, or on a form that you
can convert to rich text using RenderToRTItem.

Example 15-14 Code for “Import picture” action

Dim ses As New NotesSession
Dim ws As New NotesUIWorkspace
Dim db As NotesDatabase
Dim profile As NotesDocument
Dim tmppath$
Dim rtf As Variant ' NotesRichTextItem
Dim uidoc As NotesUIDocument

Set uidoc = ws.CurrentDocument
If uidoc.CurrentField <> "Body" Then

Msgbox "You must place the cursor in a rich text field first.", 0, _
"Import picture"
Exit Sub

End If

' Locate profile document containing the image to import,
' and the RTF that contains the file attachment.
Set db = ses.CurrentDatabase
Set profile = db.GetProfileDocument("MasterProfile")
Set rtf = profile.GetFirstItem("ImageAttachment")
If rtf Is Nothing Then

Msgbox "Error: profile document is not initialized.", 0, "Import picture"
736 Domino Designer 6: A Developer’s Handbook

Elseif Not Isarray(rtf.EmbeddedObjects) Then
Msgbox "Error: profile document is not initialized.", 0, "Import picture"

Else
' There's at least one file attachment in the field.
Dim attach As NotesEmbeddedObject
Set attach = rtf.EmbeddedObjects(0)
' Make up a filename in the user's temp directory.
tmppath = Environ("Temp") & {\} & attach.Source
' Save the file attachment to temp disk file.
Call attach.ExtractFile(tmppath)
' Gring it into the document being edited.
If Lcase(Right$(attach.Source, 4)) = ".gif" Then

Call uidoc.Import("GIF Image", tmppath)
Else

Call uidoc.Import("JPEG Image", tmppath)
End If
' the temp file is no longer needed; delete it.
Kill tmppath

End If

Example: Using Import to add a table
In the previous example, Import was used to bring in an existing file—we just
copied it from where it was stored as a file attachment.

When you import HTML into rich text, you may sometimes have the same
situation. For instance, the Notes mail application uses Import to add your HTML
signature file to the end of your e-mail message, if you’ve enabled this function.

However, it’s often useful to create your own HTML. LotusScript has commands
to create and write to files, so you can write code to construct the HTML you
need when you need it. You write the HTML to a file, and then import the file to
create the rich text you want.

To try the example, use Create/Squeegee Report in the sample database. This
form uses Import to display a table of randomly generated data. The table
headings are buttons that you can click to re-sort the table according to the data
in that column.

Except for Import, there’s no way to add a button to a rich text field unless the
button was already in a rich text field or on a form somewhere waiting to be
copied. By importing HTML, you can create JavaScript buttons; the Notes client
can execute JavaScript code. As in the case of this form, if you can’t do what you
want to do using just JavaScript, the JavaScript can “click” a macro code or
LotusScript button on the form.
 Chapter 15. Rich text programming 737

A more in-depth treatment of this technique can be found in “Rich Text
Programmability for Notes R5 Applications” published in The View magazine,
May/June 2000 issue.

Example: Using Copy and Paste to add rich text
As we’ve seen in several examples in the preceding sections, you can use the
methods of NotesRichTextItem, NotesRichTextNavigator and
NotesRichTextRange to create some rich text in the back end. You can then use
the EditDocument method and a form such as the Report form to display that rich
text to the user. However, there’s not a LotusScript command to display the
back-end rich text you create in a document that’s already open in edit mode.

What you can do, however, is use the clipboard to copy information from a report
and paste it into your document. The “Insert Sales Report” action in the
Document form uses macro language @PostedCommand9 to run an agent that
generates the desired output in a new window. The action then selects the
contents of the report window, copies to clipboard, closes the report window, and
then pastes the output into the rich text field (it assumes the cursor is already in
the field).

Example 15-15 Code for “Insert Sales Report” action

@PostedCommand([ToolsRunMacro]; "SalesReport");
@PostedCommand([EditSelectAll]);
@PostedCommand([EditCopy]);
@PostedCommand([FileCloseWindow]);
@PostedCommand([EditPaste])

There is a disadvantage to this technique: it wipes out whatever was in the
clipboard before.

15.7 Using rich text from other apps via COM/OLE
Notes has a COM API and an OLE API, which means that other Microsoft
Windows applications can call Notes functions to make Notes find documents,
write documents, open new windows, and so on.

Refer to the Domino Designer help for general information about programming
Notes using COM and OLE. For the purposes of working with rich text, the COM
API is the same as the LotusScript classes, with one important exception: the

9 We use @PostedCommand instead of @Command to make the agent run before the other
commands execute.
738 Domino Designer 6: A Developer’s Handbook

new functionality of Notes 6 will not be available via COM in the initial 6.0
release. This functionality might be available in a future release of Notes 6.

The OLE interface does implement the new rich text functions, however. In the
following Visual Basic example, we use OLE automation to locate the user’s mail
file, create a new memo, fill in the fields, add a rich text body that includes a
tabbed table with more tables nested inside it, and open the memo for the user to
edit on-screen and send if they choose.

Figure 15-15 Output of OLE memo example

Example 15-16 Visual Basic code of OLE memo example

Sub NotesMailExample()
Dim notesOLE As Object
Dim maildb As Object ' NotesDatabase
Dim memo As Object ' NotesDocument
Dim body As Object ' NotesRichTextItem
Dim tabTable As Object ' NotesRichTextTable
Dim nav As Object ' NotesRichTextNavigator

On Error GoTo trap
Set notesOLE = CreateObject("Notes.NotesSession")
 Chapter 15. Rich text programming 739

' Lotus.NotesSession if we want to use COM.

Set maildb = notesOLE.GetDatabase("", "", False)
maildb.OpenMail ' locate the user’s mail database.
Set memo = maildb.createDocument()
memo.ReplaceItemValue "Form", "Memo"
memo.ReplaceItemValue "Subject", "Tournament Score Report: " & Format(Date,

"Long Date")
memo.ReplaceItemValue "BlindCopyTo", "Scores Mailing List"
Set body = memo.CreateRichTextItem("Body")
body.AppendText "Here are your up to the minute tournament scores!"
Dim games(0 To 3) As String
games(0) = "Chess"
games(1) = "Checkers"
games(2) = "Mahjongg"
games(3) = "Jacks"
' Create a tabbed table with the above as the tabs.
Call body.AppendTable(4, 1, games)
body.Update
Set nav = body.CreateNavigator()
nav.FindFirstElement 1 ' table
Dim i%, k%, n%
For i = 1 To 4

' find the next row of the tabbed table.
nav.FindNextElement 7 ' table cell
body.BeginInsert nav ' insert text inside the table cell.
body.AppendText games(i - 1) & " Scores:"
' add a table inside the tabbed table.
body.AppendTable 4, 4
body.EndInsert
nav.FindLastElement 1 ' table we just inserted.
For k = 1 To 4

For n = 1 To 4
nav.FindNextElement 7 ' table cell
body.BeginInsert nav
body.AppendText "row " & k & " col " & n
body.EndInsert

Next
Next
' Nav position is in the last cell of the inner table.
' FindNext table cell at top of loop will position to
' next cell of containing tabbed table.

Next

Dim ws As Object
Set ws = CreateObject("Notes.NotesUIWorkspace")
body.Update
' open memo for user editing.
ws.editdocument True, memo, False
740 Domino Designer 6: A Developer’s Handbook

' bring new Notes window to foreground.
AppActivate "Tournament Score Report"

finish:

Set body = Nothing
Set nav = Nothing
Set tabTable = Nothing
Set memo = Nothing
Set maildb = Nothing
Set ws = Nothing
Set ses = Nothing
Exit Sub

trap:
Msgbox “Error “ & err & “ line “ & erl & “: “ & error
Resume finish

End Sub

In this case, we chose to open the document on-screen. It’s also possible to
create memos and other documents totally in the back end and send or save
them using the NotesDocument methods, without the user ever seeing them.
 Chapter 15. Rich text programming 741

742 Domino Designer 6: A Developer’s Handbook

Chapter 16. XML

In this chapter, we describe what XML is, and how Domino Designer 6 supports
XML. We also look at the ways in which you can use DXL utilities, LotusScript,
and Java to handle XML in Domino applications.

The purpose of this chapter is to introduce the new features available in Domino
Designer 6 relating to XML. It will not, however, cover programming for XML in
great detail. The IBM Redbook XML Powered by Domino - How to use XML with
Lotus Domino, SG24-6207, presents the topic in great detail, and includes
numerous examples in LotusScript and Java.

16
© Copyright IBM Corp. 2002. All rights reserved. 743

16.1 What is XML
XML stands for eXtensible Markup Language. It is similar to HTML, but unlike
HTML, which uses tags to display data, XML uses tags to describe data. In
HTML, all the tags are predefined, such as <HTML>,<HEAD> and <TABLE>.
XML allows you to define your own tags and your own document structure. Here
is a simple example:

Example 16-1 A phonebook entry in XML

<phonebook>
<contact>
<lastname>Doe</lastname>
<firstname>John</firstname>
<address>1 Medical Street, Boston, MA, 02110</address>
<telephone>1-555-123-4567</telephone>
</contact>
</phonebook>

There are some important differences between HTML and XML. These
differences are listed in Table 16-1. For XML, these are also known as rules.

Table 16-1 Major differences between HTML and XML

HTML XML

Tags are not case sensitive. Elements names (tags) are case
sensitive.

In some cases, the end tag is not
required. For example: <P>

A start tag and an end tag must be
present. For example: <P>...</P>

A tag without a slash suffices for an empty
element. For example:

Empty elements require a slash before the
right bracket. For example:

Attribute values do not need to be in
quotes. For example:

All attribute values must be in quotes. For
example:

White space is mostly discarded when
formatting content in a browser.

White space is preserved as part of the
content, unless explicitly told not to.

Tags are allowed to overlap. For example:
some <i>text</i>

Elements are not allowed to overlap. For
example: some <i>text</i>

Isolated markup characters may be used.
For example: <formula>x > y</formula>

Isolated markup characters may not be
used. For example:
<formula> x > y</formula>
744 Domino Designer 6: A Developer’s Handbook

The rules for XML need to be strictly adhered to if you wish to generate
well-formed XML. A well-formed XML document is one that satisfies all the XML
rules, and is able to be read by an XML parser. This ensures that all XML data
follows a strict standard, and is particularly useful when integrating XML data
from a different application.

XML documents can be created with or without a document type definition
(DTD). Without a DTD, XML processors can still determine whether a document
is well-formed syntactically. However, if you make use of a DTD, it is possible to
determine whether the XML document is valid or not.

A valid XML document is one that has elements that conform to a specification,
which it obtains from a DTD. A DTD defines the data structure of each XML
document. It defines the names of elements and attributes, the tree structure of
the data, the number of elements, and any rules related to the data structure. We
usually use DTDs when we exchange data with other systems. This ensures a
consistency between two different sets of data, and allows for an easier
interpretation of the data.

One of the main benefits of XML is that it can be used as a universal data format.
This means that we can exchange information between systems over intranets
and the internet, making use of browsers and Java.

XSL and XSLT
XML itself only describes the structure of the data. When you open an XML file,
the data itself is presented to you in plain text. It would be much more useful if
you could manipulate the data and change the format of its presentation. There is
an XML-based language available that allows you to change the presentation of
XML and display it in various media (for example, a Web page). It is called XSL
(eXtensible Stylesheet Language). Included in XSL is XSLT (XSL
Transformation). XSLT is the engine that you use to do the actual transformation
from XML to a more presentable format.

Figure 16-1 The way XML is transformed into HTML

We can also make use of other tools to manipulate the data. XML parsers
provide application programming interfaces (APIs) to work with XML data. The
most common APIs are DOM and SAX.
 Chapter 16. XML 745

DOM API
The Document Object Model (DOM) is an API that is used to access XML files.
DOM is particularly useful when it comes to handling XML because it breaks
down the XML data and represents it as a tree object model. The root element of
the XML data forms the root node of the tree. The remaining elements are linked
to the root, or to each other as other nodes, according to their relationship with
one another. This creates a hierarchy which is easy to navigate through.

SAX API
Simple API for XML (SAX) is another API that can be used when working with
XML files. SAX does not create a document tree; it is event driven. Each element
of the XML triggers certain events, and passes these to the event handler.
SAX_StartDocument, SAX_EndDocument, SAX_StartElement, and
SAX_EndElement are examples for events generated by an XML file.

16.2 XML and Domino
Domino is already a superb environment for data integration. Notes and Domino
have a very similar architecture to that of XML. They both have separate data
and presentation parts. For example, Domino stores data in structured
documents, separate from its presentation. It retrieves a form, and the structure
within a form, to display the document to you, with the form structure used as the
presentation part.

Lotus has developed an XML language for representing Domino data. It is called
Domino XML Language (DXL). This language contains a set of elements (tags)
and attributes to describe Notes documents, views, rich text, and any other
elements that can be stored in a .nsf file. DXL allows you to describe both data
and design elements.

Domino Designer 6 includes some powerful tools for handling XML. These are
known as DXL Utilities. The three tools are:

� Exporter - Converts any Domino Design Element into DXL.

� Viewer - Domino will display the element to you in the DXL format.

� Transformer - Transformer allows you to output all of your database design or
selected elements, transform them by applying a style sheet, and either send
the output to your display screen or write it to an HTML file.

These tools are available from the Tools -> DXL Utilities menu.
746 Domino Designer 6: A Developer’s Handbook

For programmers, Domino Designer 6 has included new LotusScript classes that
can be used when working with DXL. They are:

� NotesDXLExporter class
� NotesDXLImporter class
� NotesXSLTransformer class
� NotesDOMParser class
� NotesSAXParser class
� NotesDOMAttributeNode class
� NotesDOMCDATASectionNode class
� NotesDOMCharacterDataNode
� NotesDOMCommentNode class
� NotesDOMDocumentFragmentNode class
� NotesDOMDocumentTypeNode class
� NotesDOMDocumentNode class
� NotesDOMElementNode class
� NotesDOMEntityNode class
� NotesDOMEntityReferenceNode class
� NotesDOMNamedNodeMap class
� NotesDOMNode class
� NotesDOMNodeList class
� NotesDOMNotationNode class
� NotesDOMProcessingInstructionNode class
� NotesDOMTextNode class
� NotesDOMXMLDeclNode class
� NotesNoteCollection class
� NotesSAXAttributeList class
� NotesSAXException class
� NotesStream class
� NotesXMLProcessor class

Important: To make use of the DXL utilities, you ,ust be +running Internet
Explorer 5.01 or later. Check your location document to make sure your
Internet Browser field is set to “Notes with Internet Explorer” or “Internet
Explorer.”
 Chapter 16. XML 747

Figure 16-2 Domino objects for DXL support

Most of the existing LotusScript classes have also been enhanced with new
methods which assist in working with XML objects. These new classes are
explained in detail, with examples, later on in this chapter.

You would most likely use DXL in one of three ways:

1. To export XML data from Domino databases into other applications or
databases

2. To modify data in a Domino database by exporting DXL, making changes,
and then reimporting the data back into Domino

3. To import XML data from external databases or applications into Domino
databases

Lotus Domino Designer includes the LotusXSL processor in the product so you
can parse and transform XML data without a separate download.

To create and process Domino data expressed as DXL, use:

� NotesDXLExporter to generate DXL

� NotesDXLImporter to process DXL data

Use industry-standard tools to:

� Transform DXL data through XSLT with the NotesXSLTransformer class
748 Domino Designer 6: A Developer’s Handbook

� Parse XML data into a standard DOM tree structure with the
NotesDOMParser class

� Parse XML data as a series of events with the NotesSAXParser class

The XML Processor class is a base class that contains the properties and
methods common to all XML processing classes.

Use these “helper” classes to:

� Stream XML to or from a memory buffer or file with the NotesStream class.

� Build subsets of notes to export with the NotesNoteCollection class in
conjunction with NotesDXLExporter.

16.3 Basic XML use in Domino Designer
Domino, by nature, is an excellent tool for storing documents of structured and
unstructured information; the security, directory, and application development
features found in Domino make it a very effective tool for storing and generating
XML.

There are some very simple ways of developing Domino elements that display
XML. However, as with most simple methods, there are certain disadvantages to
using them. The main disadvantage is inflexibility, since your XML will be hard
coded into your forms, views, or pages. This would be relatively difficult to
change.

16.3.1 XML for forms, views, or pages

Forms
A relatively easy method of transforming Domino data to XML is to create a form
that contains fields you want to convert to XML data, then add tags on either side
of the field that will be interpreted as XML.
 Chapter 16. XML 749

Figure 16-3 A simple form containing XML tags

Figure 16-4 The settings required for forms containing XML

Note: In order for the form to be recognized as XML in your browser, the
form’s Default property - Content type must be set to HTML, and the “Render
pass through HTML in Notes” option on the Form info tab must be selected.
Otherwise the form will be rendered incorrectly! Figure 16-4 shows the
pertinent settings.
750 Domino Designer 6: A Developer’s Handbook

The main disadvantage of using this method is the future inflexibility and
maintenance that you would be faced with. Since the XML elements are
hard-coded and directly associated with field names on the form, changing the
field name on the form or associating a field with another XML element becomes
confusing and difficult, especially if you're using a large number of forms to
generate XML.

A more flexible solution is to build agents that run on a regular schedule or when
a form is opened via the form WebQueryOpen event to generate XML on the fly.
While this requires more work on the front-end, the agents themselves can
provide automatic XML generation tools based on form data. These agents can
be written in LotusScript or Java, as seen in examples later on in this chapter.

Views and pages
There are occasions when we must be able to represent many documents in
XML. In Domino there are many ways to generate representations of multiple
documents. The easiest way is to create a view that contains the documents that
you want to generate as XML. Once the view is created, there are several ways
to create XML data out of the view columns. We examine these ways in this
section.

The easiest way to convert your view into XML is to use the built-in
?ReadViewEntries URL command. This requires no programming. This option
however, is the least flexible, and will only be meaningful if an XML parser is used
to receive the data. Parsers are described in more detail later on in this chapter.

To use this command, simply type the following in your Web browser:

http://your_server/your_database.nsf/view_name?ReadViewEntries
 Chapter 16. XML 751

Figure 16-5 The ?ReadViewEntries URL command

The ?ReadViewEntries URL command also has a number of useful arguments
that we can append to the URL if required. These arguments are:

� Collapse=n
� CollapseView
� Expand=n
� ExpandView
� KeyType=text|time
� PreFormat
� ResortAscending=column number
� ResortDescending=column number
� RestrictToCategory=category
� Start=n
� StartKey=string
� UntilKey=string
752 Domino Designer 6: A Developer’s Handbook

For example, the following URL displays only the second entry:

http://127.0.0.1/phonebook.nsf/XML?ReadViewEntries&Start=2

For more information on the use of these commands, as well as several
examples, refer to the Domino Designer online help.

Another method of producing XML using a view, is to map the XML tags to the
columns in the view. Once you have created a view and mapped the XML tags to
it, you embed the view into a page. A view embedded into a page maintains the
same functionality on the Web as a view in a Notes client application, and allows
you to control the size and appearance of the view display. For views displaying
XML, the page contains the XML declaration and root element.

To map XML to a view, do the following:

1. Create a view and open it.

2. Select Edit -> Properties to open the View Properties box.

3. Click the Advanced tab.

4. In the Web Access section, select “Treat view contents as HTML.” Domino
generates HTML for the contents of a view if this property is not selected. In
addition, the content of a view that is embedded into a page is not visible if
this property is not selected. The correct setting is shown in Figure 16-6.

Figure 16-6 The Advanced properties for a view

5. Click “View Selection” on the Objects tab and add a selection formula to
define which documents will be included in the view. For our example,
documents are selected for the view using the following formula:

SELECT @All
 Chapter 16. XML 753

6. Click “Form Formula” on the Objects tab and enter a formula that selects your
template form.

SELECT Form = "XML"

7. Add columns to the view.

8. Click the first column of the view.

9. Enter a formula for Column Value in the Script area using the following syntax:

"<PARENT><CHILD>"+fieldname+"<\CHILD>"

Our example looked like this:

"<contact><lastname>"+lastname+"</lastname>"

If you have more than one element for any column, add a semicolon (;) at the
end of the first column formula and add the column formula for the next
element below it.

"<PARENT><CHILD>"+fieldname+"<\CHILD>";
"<CHILD>"+fieldname+"<\CHILD>";
"<CHILD>"+fieldname+"<\CHILD>"

Tip: Use the following syntax to make a field an attribute of an element:

"<CHILD attributeName=\""+fieldname+"\">"+fieldname2+"</CHILD>

10.Click the second column and type a column formula into the Script area using
the following syntax:

"<CHILD>"+fieldname+"<\CHILD>"

For example:

"<firstname>"+firstname+"</firstname>"

11.Repeat Step 10 for each XML element except the last one.

12.For the last child element, use the following syntax:

"<LASTCHILD>"+fieldname+"<\LASTCHILD></PARENT>"

For example:

"<telephone>"+telephone+"</telephone></contact>"

Once you have set up your view, you have to create a page into which you will
embed the view.

1. Open or create a page.

2. Select Design -> Page Properties.

3. Click the Page Info tab.

4. In Web Access, select “Treat page contents as HTML,” and close the Page
properties box. See Figure 16-7.
754 Domino Designer 6: A Developer’s Handbook

Figure 16-7 The Page info properties for our XML page

5. Type an XML declaration above the place where you want the embedded view
to display, for example:

<?xml version=”1.0” encoding=”UTF-8” ?>

6. Type the root tag below the XML declaration, for example:

<phonebook>

7. Place the cursor where you want the embedded view to display.

8. Select Create -> Embedded Element -> View.

9. (Optional) If you don't want to display the same view in all circumstances, click
“Choose a View based on a formula.” When you click OK to close the dialog
box, write a formula in the Programmer's pane to display the appropriate view.

10.Choose the view you wish to embed and click OK to embed it.

11.Click the embedded view and select Element -> View Properties. On the Info
tab, ensure that under Web access, “Using View’s display property” is
selected. See Figure 16-8. If you wish to change the alignment or style, or
hide the element under certain conditions, change the relevant Page
properties.

Figure 16-8 The Embedded View properties
 Chapter 16. XML 755

12.Type a close root tag below the view, for example:

</phonebook>

Once these steps have been followed, your view in Internet Explorer should look
like the screen shown in Figure 16-9.

Figure 16-9 The page displaying XML from a view

Style sheets
Since the XML file only describes the data, we need to apply a stylesheet to
display the data in a more meaningful format. In Domino, we can use either XSL
or CSS (Cascading Style Sheets) to transform the data. Example 16-2 is an
example of an XSL stylesheet.

Example 16-2 A simple XSL stylesheet

<?xml version="1.0"?>

<!--This line is for IE only-->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

Note: A second contact has been added to the example to better illustrate the
view.
756 Domino Designer 6: A Developer’s Handbook

<!--root node-->
<xsl:template match="/" >

<!--This line sets the table border to 3 pixels, inset, black-->
<TABLE STYLE="border:3px inset black">

<!--The first row of the table. The font of the text in this row is set 10
point, boldface, Verdana, and the background color of the row to light grey.-->
<TR STYLE="font-size:10pt; background-color: lightgrey; font-family:Verdana;
font-weight:bold">

<!--This is the text that will appear in the first cell of the first row of the
table. All of the cells in this row will have the attributes defined in the
line above.-->
<TD>Last Name</TD>

<!--This is the text that will appear in the second cell of the first row of
the table-->
<TD>First Name</TD>

<!--This is the text that will appear in the third cell of the first row of the
table.-->
<TD>Address</TD>

<!--This is the text that will appear in the fourth cell of the first row of
the table.-->
<TD>Telephone</TD>

<!--The end of the first row in the table.-->
</TR>

<!--This line applies the defined style to the data in each child element
contained by the root element <phonebook> and the parent element <contact>,
then puts it in the table in order by part name. Note that order-by is not the
field name, but the XML tag that is associated with the field.-->
<xsl:for-each select="phonebook/contact">

<!--The second row and subsequent rows of the table. The font is set to
Verdana, 10 point. The cell padding is set to 0 pixels and 6 pixels.-->
<TR STYLE="font-family:Verdana; font-size:10pt; padding:0px 6px">

<!--The data contained by the <lastname> tag will be placed in the first
column.-->
<TD><xsl:value-of select="lastname" /></TD>

<!--The data contained by the <firstname> tag will be placed in the second
column.-->
<TD><xsl:value-of select="firstname" /></TD>
 Chapter 16. XML 757

<!--The data contained by the <address> tag will be placed in the third
column.-->
<TD><xsl:value-of select="address" /></TD>

<!--The data contained by the <telephone> tag will be placed in the fourth
column.-->
<TD><xsl:value-of select="telephone" /></TD>

<!--This line ends each row of the table. Note that a third row, fourth row,
and so on will be created until all of the data has been rendered.-->
</TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

To use an XSL stylesheet in a Domino application:

1. Create a new page.

2. Choose Design -> Page Properties.

3. Enter a name with the extension XSL in the Name field, for example:

phonebookentries.xsl

4. Ensure that under Web Access, Content type is set to HTML.

5. Write your own stylesheet, or copy the phonebookentries code in
Example 16-2 into the XML Example database.

6. Save the page with an XSL extension.

7. Create a LotusScript or JavaScript agent to access the XML and apply the
stylesheet programmatically.

Applying a stylesheet using JavaScript
In order to access the XSL we created, we use LotusScript or JavaScript. The
next example shows how to access the XSL stylesheet to access XML with
client-side JavaScript:

1. Create a new page.

2. Choose Design -> Page Properties.
758 Domino Designer 6: A Developer’s Handbook

3. Type JavaScriptXML in the Name field.

4. Click the Page Info tab and verify that "Web Access: Content type: HTML" is
not selected.

5. Type the following division tags on the page where you want your data to
display:

<div id="HTMLresults"></div>

6. Highlight the <div id="HTMLresults"></div> tags and click Text -> Pass-Thru
HTML. The tags will appear with a grey background indicating that they are
marked as pass-thru HTML.

7. Optionally, add HTML Head Content.

8. Click JSHeader and type or paste the JavaScript in Example 16-3 into the
Script area.

Example 16-3 JavaScript example to access XML in Domino

var HTMLresults;
var source;
var style;

//Defines loadXML() as a function.
function loadXML() {

//Creates a new ActiveXObject called source which is the
//Microsoft.XMLDOM parser.
source = new ActiveXObject("Microsoft.XMLDOM");

//Creates a new ActiveXObject called style which is the
//Microsoft.XMLDOM parser that is installed with IE 5.5.
//This object will be used to apply the stylesheet to the XML.
style = new ActiveXObject("Microsoft.XMLDOM");

source.async = false;
style.async = false;

//Sets the validateOnParse property to false.
source.validateOnParse = false;

//Loads the GetParts page into the parser using
//the openPage URL command.
source.load("http://localhost/phonebook.nsf/Xpage?openPage");

Note: HTMLresults is an attribute that is used in the JSHeader object
described below.
 Chapter 16. XML 759

//Loads the phonebookentries.xsl stylesheet into the
//parser using the openPage URL command.
style.load("http://localhost/phonebook.nsf/phonebookentries.xsl?OpenPage");

//Error handler. If there is an error, call the
//showError() function.
if(source.parseError.errorCode != 0) {
showError();
}
//If there is no error, call the doTransform() function.
doTransform();
}

//Defines doTransform() as a function.
function doTransform() {

//If the getReadyState() function returns true,
//then transform the node using the
//stylesheet and put the results inside the tags with
//the HTMLresults attribute.
if (getReadyState()){

resulting = source.transformNode(style);
document.all.item("HTMLresults").innerHTML = resulting;
}
//If the getReadyState() function doesn't return
//true, then refresh.
self.refresh;
}

//Defines the getReadyState function.
function getReadyState() {
alert("ready state: " + source.readyState);
if (source.readyState == 4) {
return true;
}
setTimeout("getReadyState()", 100);
}

//Defines the showError() function.
function showError() {
var strError = new String;
var err = source.parseError;
strError = 'Error!\n' +
'file url: '+err.url +' \n'+
'line no.:'+err.line +'\n'+
'char: '+ err.linepos + '\n' +
'source: '+err.srcText+'\n'+
'code: '+err.errorCode+'\n'+
760 Domino Designer 6: A Developer’s Handbook

'description: '+err.reason+'\n';
document.all.item("HTMLresults").innerHTML = strError;
}

9. In the OnLoad event, type or paste the following JavaScript:

//Calls the loadXML() function when the page is
//loaded into the browser.
loadXML();

10.Save the page.

11.Choose Design -> Preview In Web Browser -> Internet Explorer.

The XSL file should have transformed your XML data to look like Figure 16-10.

Figure 16-10 XML data transformed by the XSL stylesheet

16.4 XML tools (DXL Utilities)
Domino Designer 6 now has an easy way to work with XML in your applications.
The DXL Utilities are available from the Tools menu in Designer. Using these
tools, you can simply choose the elements you wish to export, view, or transform
with only a few clicks of your mouse. Domino then handles the elements
according to your selection.

Note: You are able to preview this page directly in Internet Explorer 5.5
because the XML in the GetParts page is being accessed programmatically
via JavaScript.
 Chapter 16. XML 761

16.4.1 Exporter
Possibly the easiest way to transform a Domino Designer element into DXL is to
use the Export utility. To use this, you need to have Domino Designer 6 open.

1. Select one or more design elements in the design pane.

2. Choose Tools -> DXL Utilities -> Exporter. The dialog box in Figure 16-11 is
displayed.

Figure 16-11 DXL Exporter dialog box

3. Enter a file name and path for the XML file and click Save. You can save you
file either as an XML file or as a DXL file.

You can now go to the file that was created and edit or view the contents with any
text editor.

16.4.2 Viewer
The Viewer allows you to see any element that you select in the DXL format.To
view the Design elements as DXL, do the following:

1. Check your location document to make sure your Internet Browser field is set
to “Notes with Internet Explorer” or “Internet Explorer.”

2. Select one or more design element in the design pane.

3. Choose Tools -> DXL Utilities -> Viewer.

Note: Using these features requires Internet Explorer version 5.01 or later.
762 Domino Designer 6: A Developer’s Handbook

The DXL will be displayed in your Notes client or in Internet Explorer, depending
on your Notes browser setting.

16.4.3 Transformer
The Transformer utility allows you to take an existing DXL file and transform it
using an XSL file. This gives you the ability to apply styles and formats to
customize the data so that it will be more meaningful to you.

Before you can transform your DXL, you will need to have an XSL file available
which contains the tags that make up a design element.

1. Select one or more design elements in the design pane.

2. Choose Tools -> DXL Utilities -> Transformer.

3. Select the name of an XSL file to use for transforming the XML.

Designer ships with some sample XSL files that you can select, or you can
browse the file system to select another XSL file.

4. Choose a type of output. Either select screen for a screen display, or specify
an output file name.

Figure 16-12 The DXL Transformer dialog box

16.5 XML and LotusScript
As we mentioned earlier, one of the biggest disadvantages of hard-coding XML
in Domino is its inflexibility. However, we can get the same results
 Chapter 16. XML 763

programmatically. Agents can be set to run on a schedule, based on an event, or
in response to a URL command. This kind of flexibility is necessary to create
automated XML applications.

16.5.1 LotusScript agents
Example 16-4 is an agent that retrieves each document in a view called XML,
creates XML from the content, and prints the output when opened in a browser.

Example 16-4 LotusScript that converts a view to XML

Dim s As New NotesSession
Dim db As NotesDatabase
Dim doc As NotesDocument
Dim view As NotesView

Set db = s.currentDatabase
Set view = db.GetView("XML")
Set doc = view.GetFirstDocument

Print "Content-type: text/xml"
'Prevents Domino from sending default headers.
Print "<phonebook>"
'phonebook is the root element of the XML document.

While Not (doc Is Nothing)
'Loop as long as there are document objects available.
 Print "<contact>"
 'Send the parent element for each book document.
 Print "<lastname>"+doc.lastname(0)+"</lastname>"
 Print "<firstname>"+doc.firstname(0)+"</firstname>"
 Print "<address>"+doc.address(0)+"</address>"
 Print "<telephone>"+doc.telephone(0)+"</telephone>"
 Print "</contact>"
 'Close the contact element tag.
 Set doc = view.GetNextDocument(doc)
 'Get the next document in the view.
Wend
Print "</phonebook>"
'Closes the root element.

The results of running the LotusScript in Example 16-4 are displayed in
Figure 16-13.
764 Domino Designer 6: A Developer’s Handbook

Figure 16-13 Using a LotusScript agent to display XML from a view

There are times when it would be preferable to generate your XML tags on the fly.
This means that to add a new element to a form or remove an existing element
from a form, the developer would only have to add or delete a field. The agent in
Example 16-5 will take the form, and automatically generate XML tags for each
field on the form.

Example 16-5 An agent that creates XML tags on the fly

Sub Initialize
Dim session As NotesSession
Set session = New NotesSession
Dim doc As NotesDocument
Set doc = session.DocumentContext
AllFields_LotusScript=""
Forall i In doc.Items
If (Instr(i.name, "$") = 0) Then
AllFields_LotusScript = AllFields_LotusScript + "<" + i.name+">"+
i.text + "</" + i.name+">"+Chr(13)
End If
End Forall
doc.AllFields_LotusScript=AllFields_LotusScript
End Sub

This agent also removes the $ character from any field names since this
character is not allowed in XML element names.
 Chapter 16. XML 765

You are also required to hide the actual fields from the Web, and the declaration
and root element should be hidden from Notes.

Figure 16-14 The form and settings required to generate XML correctly

Calling this agent from the WebQueryOpen event for your form, you should get
the results shown in Figure 16-15 when the document is opened via your
browser.

Note: Remember to have the form’s content type set to HTML.See
Figure 16-4 on page 750.

This should be hidden
from Notes R4.6 or later.

This must be hidden from
Web browsers.

Ensure that you hide the
relevant fields from the
different clients.
766 Domino Designer 6: A Developer’s Handbook

Figure 16-15 XML that was generated on the fly

16.5.2 New support for DXL
Domino Designer 6 now comes with built-in support for DXLs. In this section we
discuss the new classes for LotusScript that are included, and give an example of
how each of the main classes is used.

Domino Designer 6 also allows pipelining when using NotesDXLExporter,
NotesDXLImporter, and NotesXSLTransformer. You construct a pipeline by
specifying one object as the input to another object, which can be the input to a
third object, and so on. The Process method of the first object in the pipeline
initiates processing for all the objects. The following pipeline segments are
allowed:

� NotesDXLExporter to NotesXSLTransformer

� NotesDXLExporter to NotesDXLImporter

� NotesXSLTransformer to NotesXSLTransformer

� NotesXSLTransformer to NotesDXLExporter

Example 16-6 is a simple example.
 Chapter 16. XML 767

Example 16-6 A pipelining example

Set exporter = session.CreateDXLExporter(inputDoc) 1

Set importer = session.CreateDXLImporter(exporter) 2

exporter.Process 3

1 The XML “pipe” feature makes it unnecessary to specify the SAX parser as the
output object here.
2 Specifying the exporter as the input to the SAX parser makes the SAX parser
the output of the exporter.
3 This initiates both the export and the SAX-parsing operations.

NotesDXLExporter class
Converting a Designer element to DXL programmatically is much easier now
using the new NotesDXLExporter class for LotusScript. This class is used in the
following way:

1. Use CreateDXLExporter in NotesSession to create a NotesDXLExporter
object.

2. If you do not specify the input parameter, use SetInput to specify the input
Domino data. If you do not specify the output parameter, use SetOutput to
specify the output DXL data. You can also use these methods to override the
CreateDXLExporter parameters.

3. Finally, call Process to initiate a conversion.

The following example creates an agent that is accessible via the Notes client
that will convert any select documents to DXL. This can be especially useful if
you need to convert numerous documents at once. In order for this example to
work correctly, a couple of steps need to taken beforehand:

1. Create a directory on your C:\ drive called DXL (you may also change the
filename$ value in the agent’s code to reflect a different directory).

2. Create an empty text file with the name your_database.xml. For example, we
created phonebook.xml.This can be done using NotePad or any other text
editor.

3. Copy the Domino DTD file (called domino.dtd) from your Notes directory to
the C:\DXL directory (or whatever you chose to call your directory).
768 Domino Designer 6: A Developer’s Handbook

Figure 16-16 Directory structure for the DXL example

4. Create an agent in that database that will contain the LotusScript in
Example 16-7.

Example 16-7 Converting documents to DXL using NotesDXLExporter

Sub Initialize
 Dim session As New NotesSession
 Dim db As NotesDatabase
 Set db = session.CurrentDatabase

 REM Open xml file named after current database
 Dim stream As NotesStream
 Set stream = session.CreateStream
 filename$ = "c:\dxl\" & Left(db.FileName, Len(db.FileName) - 3) & "xml"
 If Not stream.Open(filename$) Then
 Messagebox "Cannot open " & filename$,, "Error"
 Exit Sub
 End If
 Call stream.Truncate

 REM Export current database as DXL
 Dim exporter As NotesDXLExporter
 Set exporter = session.CreateDXLExporter
 Call exporter.SetInput(db)
 Call exporter.SetOutput(stream)
 Call exporter.Process
End Sub

5. Once you have created the agent, you can open the database from your
Notes client and choose a view. In the view, select which documents you
would like to convert to DXL, and then choose the agent from the Tools menu.
It will populate the XML file you created with the DXL of the documents you
selected.The output should look similar to Figure 16-17.
 Chapter 16. XML 769

Figure 16-17 The DXL output for the Phonebook database

NotesXSLTransformer class
Domino Designer 6 gives you many options when it comes to transforming XML
or DXL files. Previously in this chapter, we explained how to use the DXL Utilities
Transformer feature. Using the NotesXSLTransformer and LotusScript gives, in
effect, the same result. With this class, you can transform DXL data through
XSLT.

1. Use CreateXSLTransformer in NotesSession to create a
NotesXSLTransformer object.

2. If you do not specify the input parameter, use SetInput to specify the input
DXL data. If you do not specify the styleSheet parameter, use SetStyleSheet
to specify the XSL style sheet. If you do not specify the output parameter, use

Note: You can also use NotesDOMParser and NotesSAXParser to parse
and transform DXL (or XML) data. These are be discussed in more detail later
in this chapter.
770 Domino Designer 6: A Developer’s Handbook

SetOutput to specify the output DXL data. You can also use these methods to
override the CreateXSLTransformer parameters.

3. Call Process to initiate the conversion.

NotesDOMParser class
Using the DOM API, you can access any individual node of the tree. Domino
Designer 6 has the NotesDOMParser class, which you use to access and
manipulate the nodes in a XML file.

1. Use CreateDOMParser in NotesSession to create a NotesDOMParser object.

2. If you do not specify the input parameter, use SetInput to specify the input
XML data. If you do not specify the output parameter, use SetOutput to
specify the output XML data. You can also use these methods to override the
CreateDOMParser parameters.

3. Call Process to parse the input XML into a DOM tree and raise the
PostDOMParse event.

The following example demonstrates how to use this class to parse an XML file,
examine the nodes, and create a report displaying all the nodes contained in the
XML file.

Example 16-8 An example of how the NotesDOMParser class is used

(Declarations)
Dim domParser As NotesDOMParser
Dim LF As String
Sub Initialize
 Dim session As NotesSession
 Dim db As NotesDatabase
 Dim inputStream As NotesStream, outputStream As NotesStream
 Dim docNode As NotesDOMDocumentNode

 Dim origXML As String, outputFile As String
 origXML = "c:\dxl\xmldom.xml"
 outputFile = "c:\dxl\DOMtree.txt"

 Dim header As String
 header = "Walk Tree agent"
 LF = Chr(13)+Chr(10)

 On Error Goto errh

 Set session = New NotesSession
 Set db = session.CurrentDatabase

 'create the output file
 Set outputStream =session.CreateStream
 Chapter 16. XML 771

 outputStream.Open (outputFile)
 outputStream.Truncate

 'write report title
 outputStream.WriteText ("DOM Parser Report - ")
 outputStream.WriteText (header+LF)

 'open the XML file
 Set inputStream = session.CreateStream
 inputStream.Open (origXML)
 If inputStream.Bytes = 0 Then
 outputStream.WriteText (origXML+" is empty"+LF)
 Goto results
 End If

 'create DOM parser and process
 Set domParser=session.CreateDOMParser(inputStream, outputStream)
 domParser.Process

 'get the document node
 Set docNode = domParser.Document

 Call walkTree(docNode)

results:
 Call outputStream.Close
 Exit Sub
errh:
 outputStream.WriteText ("errh: "+Cstr(Err)+": "+Error+LF)
 Resume results
End Sub
Sub walkTree (node As notesdomnode)
 Dim child As notesdomnode
 Dim elt As notesdomnode
 Dim attrs As notesdomnamednodemap
 Dim a As notesdomattributenode
 Dim piNode As Notesdomprocessinginstructionnode
 LF = Chr(13)+Chr(10)

 If Not node.IsNull Then
 Select Case node.NodeType
 Case DOMNODETYPE_DOCUMENT_NODE: ' If it is a Document node
 domParser.Output("Document node: "+node.Nodename)
 Set child = node.FirstChild ' Get the first node
 Dim numChildNodes As Integer
 numChildNodes = node.NumberOfChildNodes
 domParser.Output(" has "+Cstr(numChildNodes)+" Child Nodes"+LF)

 While numChildNodes > 0
772 Domino Designer 6: A Developer’s Handbook

 Set child = child.NextSibling ' Get next node
 numChildNodes = numChildNodes - 1
 Call walkTree(child)
 Wend

 Case DOMNODETYPE_DOCUMENTTYPE_NODE: ' It is a <!DOCTYPE> tag
 domParser.Output("Document Type node: "+ node.NodeName+LF)

 Case DOMNODETYPE_TEXT_NODE: ' Plain text node
 domParser.Output("Text node: "+node.NodeValue+LF)

 Case DOMNODETYPE_ELEMENT_NODE: ' Most nodes are Elements
 domParser.Output("Element node: "+node.NodeName)
 Set elt = node

 Dim numAttributes As Integer, numChildren As Integer
 numAttributes = elt.attributes.numberofentries
 domParser.Output(" has "+Cstr(numAttributes)+" Attributes"+LF)

 Set attrs = elt.Attributes ' Get attributes

 Dim i As Integer
 For i = 1 To numAttributes ' Loop through them
 Set a = attrs.GetItem(i)
 ' Print attr. name & value
 domParser.Output("Attribute "+a.NodeName+": "+a.NodeValue+LF)
 Next

 numChildren = elt.NumberOfChildNodes
 Set child = elt.FirstChild ' Get child
 While numChildren > 0
 Call walkTree(child)
 Set child = child.NextSibling ' Get next child
 numChildren = numChildren - 1
 Wend
 domParser.Output(elt.nodeName+LF)

 Case DOMNODETYPE_COMMENT_NODE: ' Comments
 domParser.Output("Comment node: "+node.NodeValue+LF)

 Case DOMNODETYPE_PROCESSINGINSTRUCTION_NODE: ' Handle PI nodes
 Set piNode = node
 domParser.Output("Processing Instruction node: ")
 domParser.Output(" with Target "+piNode.Target+_
 " and Data "+piNode.Data+LF)

 Case DOMNODETYPE_CDATASECTION_NODE: ' CDATA sections
 domParser.Output("CDATA Section node: "+node.NodeName)
 domParser.Output(" has value of "+node.NodeValue+LF)
 Chapter 16. XML 773

 Case DOMNODETYPE_ENTITYREFERENCE_NODE: ' Handle entities
 domParser.Output("Entity Reference node: "+node.NodeName+LF)

 Case Else:
 domParser.Output("Ignoring node: "+Cstr(node.NodeType)+LF)

 End Select 'node.NodeType
 End If 'Not node.IsNull
End Sub

Figure 16-18 shows the text file that was generated by our agent, using the
NotesDOMParser class.

Figure 16-18 The output from the NotesDOMParser example

NotesSAXParser class
The NotesSAXParser class is used as follows:

1. Use CreateSAXParser in NotesSession to create a NotesSAXParser object.
774 Domino Designer 6: A Developer’s Handbook

2. If you do not specify the input parameter, use SetInput to specify the input
XML data. If you do not specify the output parameter, use SetOutput to
specify the output XML data. You can also use these methods to override the
CreateSAXParser parameters.

3. Call Process to initiate the data conversion process by triggering a series of
event handlers.

In Example 16-9, we read an XML file and display each event in a message box.
Errors and warnings are written to a file.

For this example, we have used the two entries in the phonebook.nsf database,
created an XML file called phonebookentries.xml, and copied it to the C:\dxl
directory.

Example 16-9 The NotesSAXParser class

(Options)
%INCLUDE "lsconst.lss"

Sub Initialize

 Dim session As New NotesSession
 Dim saxParser As NotesSAXParser

 Dim xml_in As NotesStream
 filename$ = "c:\dxl\phonebookentries.xml" ' open input file
 Set xml_in=session.CreateStream
 If Not xml_in.Open(filename$) Then
 Messagebox "Cannot open " & filename$,, "XML file error"
 Exit Sub
 End If
 If xml_in.Bytes = 0 Then
 Messagebox filename$ & " is empty",, "XML file error"
 Exit Sub
 End If

 Dim xml_out As NotesStream
 filename$ = "c:\dxl\saxparser.txt" ' create output file
 Set xml_out=session.CreateStream
 If Not xml_out.Open(filename$) Then
 Messagebox "Cannot create " & filename$,, "TXT file error"
 Exit Sub
 End If
 xml_out.Truncate

 Set saxParser=session.CreateSAXParser(xml_in, xml_out)

 On Event SAX_Characters From saxParser Call SAXCharacters
 Chapter 16. XML 775

 On Event SAX_EndDocument From saxParser Call SAXEndDocument
 On Event SAX_EndElement From saxParser Call SAXEndElement
 On Event SAX_Error From saxParser Call SAXError
 On Event SAX_FatalError From saxParser Call SAXFatalError
 On Event SAX_IgnorableWhitespace From saxParser _
Call SAXIgnorableWhitespace
 On Event SAX_NotationDecl From saxParser Call SAXNotationDecl
 On Event SAX_ProcessingInstruction From saxParser _
Call SAXProcessingInstruction
 On Event SAX_StartDocument From saxParser Call SAXStartDocument
 On Event SAX_StartElement From saxParser Call SAXStartElement
 On Event SAX_UnparsedEntityDecl From saxParser Call SAXUnparsedEntityDecl
 On Event SAX_Warning From saxParser Call SAXWarning

 saxParser.Process ' initiate parsing

End Sub

Sub SAXStartDocument (Source As Notessaxparser)
 Messagebox "Start reading Document", MB_ICONINFORMATION
End Sub

Sub SAXEndDocument (Source As Notessaxparser)
 Messagebox "End of Document", MB_ICONINFORMATION
End Sub

Sub SAXCharacters (Source As Notessaxparser, Byval Characters As String, _
Count As Long)
 Messagebox "Characters found", MB_ICONINFORMATION
 Source.Output (Characters)
End Sub

Sub SAXEndElement (Source As Notessaxparser, Byval ElementName As String)
 Messagebox "End of Element", MB_ICONINFORMATION
End Sub

Sub SAXError (Source As Notessaxparser, Exception As NotesSaxException)
 Messagebox "Error - "+Exception.Message, MB_ICONINFORMATION
 Source.Output ("Error - "+Exception.Message)
End Sub

Sub SAXFatalError (Source As Notessaxparser, Exception As NotesSaxException)
 Messagebox "FatalError - "+Exception.Message, MB_ICONINFORMATION
 Source.Output ("FatalError - "+Exception.Message)
End Sub

Sub SAXIgnorableWhitespace (Source As Notessaxparser,_
Byval characters As String, Count As Long)
 Messagebox "Ignorable Whitespace found", MB_ICONINFORMATION
776 Domino Designer 6: A Developer’s Handbook

End Sub

Sub SAXNotationDecl (Source As Notessaxparser,_
Byval NotationName As String, Byval publicid As String,_
Byval systemid As String)
 Messagebox "Notation Declaration found", MB_ICONINFORMATION
End Sub

Sub SAXProcessingInstruction (Source As Notessaxparser,_
Byval target As String, Byval PIData As String)
 Messagebox "Processing Instruction found", MB_ICONINFORMATION
End Sub

Sub SAXStartElement (Source As Notessaxparser,_
Byval elementname As String, Attributes As NotesSaxAttributeList)
 Dim i As Integer
 Messagebox "Start reading Element name = "+elementname, MB_ICONINFORMATION
 If Attributes.Length > 0 Then
 Dim attrname As String
 For i = 1 To Attributes.Length
 attrname = Attributes.GetName(i)
 ' test GetValue and GetType args two ways _
 ' - by attribute name and by attribute index
 Messagebox "Attribute "+attrname+" = "_
 +Attributes.GetValue(attrname)+",_
 type = "+Attributes.GetType(attrname), MB_ICONINFORMATION
 Messagebox "Attribute "+attrname+" = "+Attributes.GetValue(i)+",_
 type = "+Attributes.GetType(i), MB_ICONINFORMATION
 Source.Output("Attribute "+attrname+_
 " = "+Attributes.GetValue(attrname)+",_
 type = "+Attributes.GetType(attrname))
 Next
 End If
End Sub

Sub SAXUnParsedEntityDecl (Source As Notessaxparser,_
Byval Entityname As String, Byval publicid As String,_
Byval systemid As String, Byval notationname As String)
 Messagebox "Unparsed Entity Declaration found", MB_ICONINFORMATION
End Sub

Sub SAXWarning (Source As Notessaxparser, Exception As NotesSaxException)
 Messagebox "Warning - "+Exception.Message, MB_ICONINFORMATION
 Source.Output("Warning - "+Exception.Message)
End Sub
 Chapter 16. XML 777

Figure 16-19 shows one of the message boxes that was generated by running
Example 16-9.

Figure 16-19 A message box displayed during the example

NotesDXLImporter class
This class allows you to import any DXL file into a Domino database. Once
imported, you will see the new element that was imported in the database
design.

In this instance, you can use CreateDXLImporter in NotesSession to create a
NotesDXLImporter object. If you do not specify the input parameter, use SetInput
to specify the input DXL data. If you do not specify the output parameter, use
SetOutput to specify the output Domino data. You can also use these methods to
override the CreateDXLImporter parameters.

Use ACLImportOption, DesignImportOption, and DocumentImportOption to
indicate whether you want to create additional elements in the output database
from the incoming DXL, ignore incoming elements, replace existing elements, or
update existing elements.

Call Process to initiate a conversion.

Example 16-10 is an agent that was created to import a DXL file from the file
system into an existing database.

You need to have the following in place if this example is to work:

� A DXL file generated from an element in your existing database (using the
Tools -> DXL Utilities -> Exporter in Designer). Name this file
your_database.dxl and saved in the C:\DXL directory (you may also change
the filename$ value in the agent’s code to reflect a different directory). For
example:

C:\DXL\phonebook.dxl

� An existing database in your Notes\Data directory that does not already
contain the element that you wish to import. For example:

newphonebook.nsf

We run this agent from the source database.
778 Domino Designer 6: A Developer’s Handbook

Example 16-10 NotesDXLImporter example

Sub Initialize
Dim session As New NotesSession
Dim db As NotesDatabase
Dim dbCopy As NotesDatabase
Set db = session.CurrentDatabase
filename$ = Left(db.FileName, Len(db.FileName) - 4)

 REM Open dxl file named after current database
Dim stream As NotesStream
Set stream = session.CreateStream
If Not stream.Open("c:\dxl\" & filename$ & ".dxl") Then

Messagebox "Cannot open " & filename$,, "Error"
Exit Sub

End If
If stream.Bytes = 0 Then

Messagebox "File did not exist or was empty",, filename$
Exit Sub

End If

 REM Create new database named current database + "Copy"
Set dbCopy = New NotesDatabase("", "")
Call dbCopy.Open("","new" & filename$)

 REM Import DXL into new database
Dim importer As NotesDXLImporter
Set importer = session.CreateDXLImporter(stream, dbCopy)
Call importer.Process

End Sub

Once this agent is run, it will have created the Design element that you previously
exported into your existing database in your Data directory called
newyour_database.nsf (for example: phonebookCopy.nsf). You should be able to
open the new database and see the imported element.

16.6 XML and Java
Java is probably the most common language used outside of Domino to exploit
XML. This is mainly because of the powerful classes that have been provided to
Java developers that allow them to manipulate XML in many different ways.
Domino Designer 6 now includes the XML4J parser and LotusXSL processor,
which allows you to parse and transform XML data.
 Chapter 16. XML 779

Table 16-2 Back-end Java classes provided by Domino

Another Java class, the XSLTResultTarget class, is a wrapper class in the
com.lotus.xsl package that contains the result of a transformation made using the
LotusXSL processor. An instance of this class serves as a container for the XSLT
Result tree.

With the generateXML, parseXML, and transformXML methods, you have the
same functionality as you do when you use LotusScript.

generateXML
You can use a Java agent to generate XML for you from a Domino document.
Using the generateXML method, you can generate an XML representation of a
document to the Writer. Following is an example of code using generateXML to
convert a Notes document to XML.

Example 16-11 Java code to convert a Notes document to XML

//The XmlWriter class writes data as XML to a java.io.Writer object.

// This class handles the low-level tasks of writing character data properly
// as XML, including Domino datetimes and Domino documents.

import java.io.Writer;
import lotus.domino.Document;

public class XmlWriter {
// This is the base Writer
private Writer w;

// To construct a Writer object, specify where you want the data to go.

public XmlWriter(Writer writer) {
w = writer;

Class Properties Method

Document none generateXML

EmbeddedObject InputSource, InputStream, Reader parseXML, transformXML

Item InputSource, InputStream, Reader parseXML, transformXML

MIMEEntity InputSource, InputStream, Reader parseXML, transformXML

RichTextItem InputSource, InputStream, Reader parseXML, transformXML

Note: You must include the XML4j.jar file in your classpath even if you only
need to use the transformXML methods.
780 Domino Designer 6: A Developer’s Handbook

}

// WriteContentTypeHeader() writes out the content type
// HTTP header that tells the browser that XML is coming.

public void WriteContentTypeHeader()
throws java.io.IOException

{
w.write("Content-Type: text/xml\n");

}

// WriteXMLDeclaration() writes out the XML declaration
// that starts all XML streams.

public void WriteXmlDeclaration()
throws java.io.IOException

{
w.write("<?xml version='1.0'?>\n");

}

// Write a processing instruction that links the XML to a stylesheet.

public void UseStylesheet(String href, String type)
throws java.io.IOException

{
w.write("<?xml-stylesheet type='" + type + "' href='" + href + "'?>\n");

}

// Write a Domino document out as DXL.

public void WriteDocument(Document doc)
throws java.io.IOException, lotus.domino.NotesException

{
doc.generateXML(w);
w.flush();

}
}

// end of class XmlWriter

To access this Java agent, all you need to do is type the URL into your browser:

http://Your_server/your_database.nsf/agentName?OpenAgent&db=your_database.nsf&u
nid=documentUNID

transformXML
This method transforms the data from an input source according to a specified
stylesheet.
 Chapter 16. XML 781

The next example uses the transformXML method to take XML data and convert
it to a text file, which is written to your hard drive.

First, you need to create a form. This form will store the XML data as well as the
XSL stylesheet. Use Figure 16-20 to assist you in creating your form.

Figure 16-20 The XMLTransform form that converts XML to text

The form consists of 3 text fields and an action button. Name the fields:

� rawXML
� XSLStylesheet
� TransResult

Next, create an agent called JavaXSLconverter. In the agent properties, in the
Runtime section, select “Agent list selection” from the drop-down list. Ensure that
the Trigger is set to “On event”. This agent uses the Java code in Example 16-12.

Example 16-12 Java code for the JavaXSLConverter agent

import lotus.domino.*;
import java.io.*;
import org.xml.sax.*;
public class TransformPrimer extends AgentBase {

public void NotesMain() {
try {

Session s = getSession();
AgentContext ac = s.getAgentContext();
Database db = ac.getCurrentDatabase();
782 Domino Designer 6: A Developer’s Handbook

Document doc = ac.getDocumentContext();
// assign object variables to the fields that have the XML and XSLT code in
them

Item xmlItem = doc.getFirstItem("RawXML");
Item xslItem = doc.getFirstItem("XSLStylesheet");

//create an inputsource out of the value from the XSLT field
String sc = doc.getItemValueString("XSLStylesheet");
InputSource style = xslItem.getInputSource();

// create a File Writer, transform the xml and write it to the following file.
FileWriter fw = new FileWriter("C:\\DXL\\javaoutput.txt");
XSLTResultTarget result = new XSLTResultTarget(fw);
xmlItem.transformXML(style, result);

// create a StringWriter and write the same results to the results field in the
current document

style = new InputSource(new StringReader(sc));
StringWriter rw = new StringWriter();
result = new XSLTResultTarget(rw);
xmlItem.transformXML(style, result);
doc.replaceItemValue("TransResult" , rw.toString());
doc.save(true,true);
} catch(Exception e) {
e.printStackTrace();
}

}
}

On your XSLTranform form, add an action and label it “Transform XML”. Then add
the following formula to your Transform XML button:

@Command([ToolsRunMacro];"(JavaXSLConverter)");
@Command([FileCloseWindow]);
@Prompt([Ok];"Transformation Complete";"The Transformation is complete.
Review text file or Document contents")

Any documents you create using this form will contain both the XML data and the
stylesheet. To demonstrate the XML transformation, create a new XMLTransform
document. In the rawXML field, add the following XML file:

<?xml version="1.0" encoding="UTF-8" ?>
<phonebook>

<contact>
 <lastname>Doe</lastname>
 <firstname>John</firstname>
 <address>1 Medical Avenue, Boston, MA, 02110</address>
 <telephone>1-555-123-4567</telephone>

</contact>
<contact>

 <lastname>Pretty</lastname>
 Chapter 16. XML 783

 <firstname>Lee</firstname>
 <address>28 Augustus Avenue, Flushing, NY, 10001</address>
 <telephone>1-555-110-1010</telephone>

</contact>
 </phonebook>

In the XSLStylesheet field, add the following simple stylesheet:

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
</xsl:stylesheet>

Now click the Transform XML button. Once the Java agent has run, the form will
close and the output will be written to C:\DXL\Javaoutput.txt. The text file should
look like Figure 16-21.

Figure 16-21 The text output from the Java agent

parseXML
To convert XML data into a format that can be processed, you will need to send
the data to a parser. There are two APIs that will do this for you: the DOM API
and the SAX API.

The following example shows how to use the parseXML method of the
RichTextItem class to parse the XML and return an instance of a w3 document in
the form of a Document Object Model (DOM) tree.

Again, you will need to create a form that will contain the XML.

Note: It is possible to create a Java agent that can download an XML file (for
example, daily stock prices) on a scheduled basis, that will populate a field on
a form. This field can be parsed at a later stage.
784 Domino Designer 6: A Developer’s Handbook

Create a form that contains a rich text field to contain your XML data. It should
resemble the form in Figure 16-22.

Figure 16-22 The form required to parse XML

Next, create a Java agent called ParseXML. In the agent properties, in the
Runtime section, select “Agent list selection” from the drop-down list. Ensure that
the Trigger is set to “On event”. This agent uses the code shown in
Example 16-13.

Example 16-13 Java code for the ParseXML agent

import lotus.domino.*;
import org.w3c.dom.*;
public class JavaAgent extends AgentBase {
public void NotesMain() {
int i;

try {
Session ns = getSession();
AgentContext ac = ns.getAgentContext();
lotus.domino.Document doc = ac.getDocumentContext();
Item rawXML = doc.getFirstItem("XMLDATA");
org.w3c.dom.Document xDoc = rawXML.parseXML(false);
Element el = xDoc.getDocumentElement();
String rootTag = el.getTagName();
System.out.println("The Root Element is " + rootTag);
NodeList nl = xDoc.getElementsByTagName(rootTag);
System.out.println("There is " + nl.getLength() + " node in the Root

Node List");
 Chapter 16. XML 785

Node n = nl.item(0);
nl = n.getChildNodes();
System.out.println("The " + rootTag + " Root Tag has " + nl.getLength()

+ " child nodes");
int limit = nl.getLength();
for (i =0 ;i<limit ;i++) {

n=nl.item(i);
if (n.getNodeType() == n.ELEMENT_NODE) {

System.out.println("Node Name is:" + n.getNodeName());
System.out.println("Node Value is: " + n.getNodeValue());
System.out.println("Node Value is: " + n.getNodeType());
System.out.println("This node has child nodes: " +

n.hasChildNodes());
}

}
} catch(Exception e) {
e.printStackTrace();
}

}
}

After you have saved your agent, create a button on your xmldata form. This
button will perform a simple action, which is “Run agent”. Select (ParseXML)
from the drop-down list of available agents. Save the form and then open it in
your Notes client. Use the XML data from the previous example and paste it in
the XMLDATA field. Save the document and select File -> Tools -> Show Java
Debug Console. Click the Parse XML button and the DOM should be displayed in
the Java Console.

16.7 Summary
In this chapter we introduced XML. We described how we transform XML into
different formats that are more meaningful to us. Next, we explained how Domino
supports the XML technology. We defined what DXL is and introduced the new
LotusScript classes that are provided with Domino Designer 6. Domino can
handle XML data both basically (directly in forms, pages, and views) as well as
programmatically, using LotusScript or Java. It is possible to export Domino data
into a XML format. We can also transform existing XML data in Domino into
different formats using stylesheets. Finally we saw how to import a DXL file into a
Domino database as a new design element.
786 Domino Designer 6: A Developer’s Handbook

Chapter 17. Web services in Domino

In this chapter, we briefly discuss what a Web service is and how it relates to
Domino 6.

For a more detailed look at Web services and how to develop Web service
applications, see Domino Web Service Application Development for iSeries,
SG24-6862, and the following Lotus and IBM Web services Web sites:

http://www.lotus.com/home.nsf/welcome/webservices
http://www.ibm.com/software/solutions/webservices/

17
© Copyright IBM Corp. 2002. All rights reserved. 787

17.1 What is a Web service
A Web service can be defined as an application that has exposed an API, in order
to integrate itself with other applications. Its main function is to provide
process-to-process interaction, without the need for a user interface. This means
that you can invoke this application remotely, by interfacing with the API.
Applications that invoke this service are known as clients. XML lies at the core of
Web services, and provides a common language for describing Remote
Procedure Calls, Web services, and Web service directories.

The phrase “Web service” can sometimes be misleading, as it implies the use of
a Web browser. However, this is not always the case. There are many different
ways of invoking the Web service: an HTTP request or an e-mail from another
application are just a few examples.

One of the most common ways to invoke a Web service is by sending an HTTP
Get request to the API. Accessing the API via the Internet has many advantages:

� The API can be accessed by any client worldwide that has the address of the
Web service.

� A change in the Web service application needs to be made only at the source.

� Web services can be written in any language and on any platform, as long as
those Web services are accessible according to the Web services standards.

To enable interoperability, the Web services platform must provide a standard
system that will interface with systems that are using different platforms and/or
programming languages. A Web service platform needs to describe the Web
service and provide the information other applications need in order to invoke this
Web service.

The main technologies that make up the Web services platform are:

� XML - This is the basic format for representing data on the Web services
platform.

� SOAP - (Simple Object Access Protocol) - The remote procedure call (RPC)
facility for Web services. SOAP is a transport protocol that transports
methods using HTTP POST requests. The response returned is an XML
document.

� WDSL - Web Service Description Language is an XML-based grammar for
describing Web services, their functions, parameters, and return values.

� UDDI - (Universal Description, Discovery, and Integration) is an XML-based
directory, which represents a technical specification for publishing and finding
businesses and Web services.
788 Domino Designer 6: A Developer’s Handbook

Figure 17-1 A simple Web service application

17.2 Web services and Domino
Domino 6 is an ideal application for either hosting or using Web services. Since
Web services are comprised mainly of XML data, Domino 6 is especially capable
of exploiting Web services. This is due to the fact that Domino 6 now has many
more LotusScript classes that are designed to work specifically with XML. For
more information about these new LotusScript classes, see Chapter 16, “XML”
on page 743.

There are also tools available that provide additional support for Web services in
Domino. They are:

� SOAPConnect for LotusScript - This contains a LotusScript library that allows
you use and host Web services.

� MS SOAP toolkit - This toolkit is provided by Microsoft and allows Domino to
either use or host a Web service on a Windows platform.

� .NET (“Dot Net”) - A collection of tools from Microsoft that let you both use
and host a Web service. This set of tools is accessed from Lotus
Notes/Domino through the Common Object Model (COM) interface. For more
information on the COM interface, see 14.10, “Integration with Microsoft
technologies” on page 646.

Web Service
Client, for
example: a
browser

Search (UDDI)

Publish (WSDL)

Requests and
responses (SOAP)

Web Service Host or
Application
 Chapter 17. Web services in Domino 789

790 Domino Designer 6: A Developer’s Handbook

Appendix A. Domino and connectivity

In this appendix, we introduce and list some of the connectivity tools and
techniques available for Domino, such as OLE, LSX toolkit, ODBC, JDBC,
NotesSQL, DECS, LEI.

For most of these tools and techniques, we recommend that you to refer to the
IBM Redbook Lotus Domino R5.0: A Developer's Handbook, SG24-5331, which
contains an in-depth discussion about connecting to other sources.

A

© Copyright IBM Corp. 2002. All rights reserved. 791

CORBA/IIOP
Domino uses an architecture called Common Object Request Broker
Architecture (CORBA). This is an open standard defined by the Object
Management Group (OMG). CORBA serves as middleware for a distributed
computing environment whereby remote clients can invoke methods on remote
APIs residing on other computers. CORBA uses Internet Inter-ORB Protocol
(IIOP) for communication over a TCP/IP network. CORBA/IIOP support enables
Domino developers to create applets that can be downloaded to the client and
can be remotely invoked in Domino services, for example, to initiate a workflow
process. In addition, CORBA/IIOP enables information to be processed
efficiently over networks within an open standards-based framework and to
distribute work effectively between clients and servers, ultimately lowering the
cost of ownership.

See the Domino R5 developers handbook for more details; for Domino 6 there
are mainly minor improvements and bug fixes.

OLE Automation
OLE (Object Linking Embedding) is a feature of Windows and is also supported
on the Macintosh. The OLE object model is used by developers to expose the
objects of one product to another. OLE Automation is an OLE service for
integrating applications. Two key elements of OLE Automation are the OLE
Automation Server and OLE Automation Controller or Client. OLE Automation
Servers expose applications' functionality as objects to other applications. These
objects have properties (data) and methods (functions). OLE Automation
Controllers can control objects in OLE Automation Servers through their
properties and methods. Simply put, OLE Automation is the process in which an
OLE Automation Controller sends instructions to an OLE Automation Server. You
can call upon an OLE Automation Server object's code to perform a variety of
tasks that you do not want to, or cannot, perform in your own code.

Domino can act both as an OLE Automation Server providing functionality to
other applications, and as an OLE Automation Controller where a Domino
application integrates with functionality offered by an external OLE Automation
Server application (for example, a spreadsheet).

Changes from the support in R5 are mainly bug fixes.

LSX Toolkit/Lotus Custom Object Toolkit
An LSX (Lotus Software eXtension) is a dynamic library of objects (or classes)
written in the C++ programming language. You can use these objects from
languages and language interfaces like Java, CORBA, OLE, and LotusScript.
792 Domino Designer 6: A Developer’s Handbook

You can treat LSX objects just like any other Domino objects. For example, you
can create new objects from their classes, invoke methods, and get their
properties.

The source programming language of LSX is C++, which enables you to use
APIs of some other applications. After an LSX is loaded by Domino, the LSX
registers its C++ class definitions as corresponding LotusScript classes. This
means an LSX extends the functionality of LotusScript running in Domino
because it enables any Domino application to connect to resources and
functionality of external applications.

An LSX is the same as an LCO, since the LSX Toolkit name was changed from
the Lotus Custom Object Toolkit.

For Domino 6, there are mainly minor bugs that have been fixed.

DECS
Domino Enterprise Connectivity Services (DECS) is a Domino server task that
allows application developers to link their Lotus Domino databases to relational
databases and access data from them in real time. DECS works by capturing
certain Lotus Domino database events on the server, such as opening a form
and triggering a predefined action on the relational database. DECS is a visual
tool and high performance server environment you can use to create Web
applications that provide live, native access to enterprise data and applications.
The visual tool includes an application wizard and online Help to assist you to
define external data source connections—for example, DB2, Oracle, Sybase,
File directory, EDA/SQL, or ODBC—and fields within your application that
automatically contain external connector data.

Beyond the support already included in R5, Domino 6 includes mainly bug fixes.

Lotus Enterprise Integrator
Lotus Enterprise Integrator (LEI), a module previously called Lotus NotesPump,
extends DECS functionality beyond real-time data sources to include support for
high volume data transfer and synchronization. Lotus Enterprise Integrator
provides visual tools to manage integration between data sources without

Note: In Domino 6, some of the functionality provided by DECS is available
directly in the Domino Designer. To learn more about this see 10.5, “Data
connections” on page 335, which describes how to use the new data
connection resources to connect to a relational database from your Domino
application.
 Appendix A. Domino and connectivity 793

programming, including the capability to initiate event-driven or scheduled high
volume data transfers between Domino applications and relational databases
and other enterprise applications. This programming API is available for both LEI
and DECS.

For more information on Lotus Enterprise Integrator, see the Lotus Web site at:

http://www.lotus.com/dominoei

NotesSQL
NotesSQL is an ODBC (Open Database Connectivity) driver for Notes and
Domino. It allows ODBC-enabled data reporting tools, database tools, and
application development tools to read, report, and update information that is
stored in Domino databases (.nsf files). With NotesSQL, end users and
application developers can integrate Domino data with their applications using
tools such as Crystal Decisions Crystal Reports, Microsoft Visual Basic, Access,
Brio, and Lotus Approach. Even Internet application development tools that
support ODBC can access Domino data. IT professionals can enable their
existing ODBC-enabled applications to access data stored in a Domino
database.

A Domino database is not relational, but with NotesSQL a Domino database
looks like a relational data source to an OBDC-enabled tool. This allows
relational database management systems (RDBMS) such as Oracle or DB2 to
issue SQL (Structured Query Language) statements to Domino.

For more information on NotesSQL in Domino, refer to the Domino R5
developer's handbook and the Lotus/IBM website. These resources cover when
to use NotesSQL, requirements, installation, examples, latest versions,
configuration and other meaningful information.

ODBC
The Open Database Connectivity (ODBC) standard is a set of functions
developed by Microsoft to access Relational Database Management Systems
(RDBMS) like Oracle, DB/2, Informix, and others. There are two software
components required to use ODBC:

� ODBC Driver Manager is a set of APIs in the ODBC dynamic link library.
Those APIs are called by client programs like LS:DO, NotesSQL, and so on,
in order to access an RDBMS via ODBC.

Note: Lotus Enterprise Integrator version is a new release of the LEI and has
many new features and enhanced functionality.
794 Domino Designer 6: A Developer’s Handbook

� RDBMS ODBC driver is the driver for specific RDBMSs like NotesSQL, DB2,
Oracle, and so forth. The ODBC driver allows you to issue any SQL
statements in Data Definition Language (DDL), Data Control Language
(DCL), and Data Manipulation Language (DML) using SQLExecute or
SQLExecDirect with the ODBC API. In addition, other ODBC Drivers enable
you to get information about columns attributes, index, privileges of column,
drivers, foreign keys of tables, and other RDBMS entities.

When you develop a Notes/Domino application, you often need to implement
data integration between Notes and other data resources, such as RDBMS,
spreadsheet data, and ASCII delimited text files. If you need to do this using
ODBC, these are your possibilities:

� LS:DO (LotusScript:Data Object)

This is a LotusScript Extension (LSX) which provides additional LotusScript
classes for accessing other data resources via ODBC.

� DBLookup, @DBColumn using ODBC

These are @functions for ODBC data access. The functions @DBLookup
and @DBColumn are frequently used to access Notes databases, as well as
ODBC-compliant databases.

For more information about the use of these database access facilities, refer to
the Domino R5 developer's guide.

JDBC
JDBC is an object interface that allows Java applications and applets to retrieve
and manipulate data in database management systems using SQL. The
interface allows a single application to connect to many different types of
databases through a standard protocol. JDBC handles details for such tasks as
connecting to a database, fetching query results, committing or rolling back
transactions, and converting SQL types to and from Java program variables.
JDBC is implemented as a driver manager with multiple drivers. Each driver links
the application to a specific type of database.

JDBC was first introduced in the Java Development Kit (JDK) 1.1 from Sun
Microsystems. The JDBC classes and interfaces are part of the java.sql package.
The major components of JDBC are the JDBC driver manager and the
underlying drivers. JDBC uses the driver manager to handle finding and loading
a driver. A JDBC data source consists of the data the user application wants to
access and its associated parameters. Each JDBC driver processes JDBC
method invocations, sends SQL statements to a specific data source, and
returns results to the application.
 Appendix A. Domino and connectivity 795

JDBC drivers generally fit into one of four types:

1. The JDBC-ODBC bridge provides JDBC access via ODBC drivers. NotesSQL
(the Domino/Notes ODBC driver) may be used with the JDBC-ODBC bridge.

2. A native-API, partly-Java driver converts JDBC calls into calls on the client
API for the DBMS in question. This style of driver requires that some binary
code be loaded on the client machine. Domino Driver for JDBC is a Type 2
driver.

3. A net-protocol, all-Java driver translates JDBC calls into a
DBMS-independent net protocol which is then translated to a DBMS protocol
by a server. This net server middleware is able to connect its all-Java clients
to many different databases. This is the most flexible Java alternative.

4. A native-protocol, all-Java driver converts JDBC calls into the network
protocol used by DBMSs directly. This allows a direct call from the client
machine to the DBMS server and is a practical solution for Internet access.

For more information about the use of JDBC, refer to the redbook Lotus Domino
R5.0: A Developer's Handbook, SG24-5331.

Note: From a functionality and SQL syntax viewpoint, the JDBC driver for
Domino is the same as NotesSQL.

Note: You can now use methods that support JDBC 2.0 in the Domino Java
agents because the JVM in Domino 6 has been updated to version 1.3.
796 Domino Designer 6: A Developer’s Handbook

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246854

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246854.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

B

© Copyright IBM Corp. 2002. All rights reserved. 797

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

File name Description
Notes6RichText.zip Zipped Notes6RichText.nsf database, containing samples

used in Chapter 15, “Rich text programming” on
page 697.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB mininum
Operating System: Any, which is supported for Notes & Domino 6

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. Then copy the Notes6RichText.nsf Domino
database into your Notes/Domino data directory, for example c:\notes\data on
your local workstation or on your Domino Server.
798 Domino Designer 6: A Developer’s Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 800.

� Upgrading to Notes and Domino 6, SG24-6889

� Lotus Domino Release 5.0: A Developer's Handbook, SG24-5331

� Domino and WebSphere Together Second Edition, SG24-5955

� Lotus Domino R5.0 Enterprise Integration: Architecture and Products,
SG24-5593

� COM Together - with Domino, SG24-5670

� Lotus Mobile and Wireless Solutions, SG24-6525

� XML Powered by Domino How to use XML with Lotus Domino, SG24-6207

� Lotus Notes and Domino R5.0 Security Infrastructure Revealed, SG24-5341

� Performance Considerations for Domino Applications, SG24-5602

� Working with the Sametime Client Toolkits, SG24-6666

� Working with the Sametime Community Server Toolkit , SG24-6667

� Lotus Sametime Application Development Guide, SG24-5651

Other resources
These publications and resources are also relevant as further information
sources:

� Tamura, Randall A. and Tamura, Randy Domino 5 Web Programming with
XML, Java, and JavaScript. Que, 2000, ISBN 0789722755

� LotusScriptors Plain Simple Guide to the Lotus Notes C++ API. Lee Powell,
UK, 2002, ISBN 0954315901

� Flanagan, David JAVA in a Nutshell. O’Reilly & Associates, UK, 2002, ISBN
119900040X
© Copyright IBM Corp. 2002. All rights reserved. 799

� Dietel, Harvey M. and Dietel, Paul J. Java, How to Program (Fourth Edition).
Prentice Hall, 2001, ISBN 0130341517

� Bergsten, Hans JavaServer Pages (Second Edition). O’Reilly & Associates,
UK, 2002, ISBN 059600317X

Referenced Web sites
These Web sites are also relevant as further information sources:

� IBM Redbooks W

� Web site, Lotus Redbooks domain

http://publib-b.boulder.ibm.com/redbooks.nsf/portals/Lotus

� Sametime Links 3.0 Toolkit

http://www-12.lotus.com/ldd/doc/uafiles.nsf/docs/ST30/$File/stlinkstk.pdf

A guide to enable Web pages and applications with Sametime awareness and
real-time collaboration.

� Lotus Developer Domain

http://www.lotus.com/ldd

The Lotus Web site for developers. Includes discussion forums, technical
journal, articles, interviews, sample applications, documentation, downloads
and more.

� Dominozone

http://www.dominozone.net

A non-profit Web site for developers interested in Domino. Includes
discussion forums, articles, interviews, sample applications, downloads.

� IBM developerWorks

http://www-106.ibm.com/developerworks/

IBM Web site for developers. Includes discussion forums, articles, tutorials,
online courses, sample code and applications, downloads. The site contains
technology zones, such as Java, XML and Web services, as well as product
domains for WebSphere, Tivoli, DB2, Lotus and others. Be sure to subscribe
to the weekly newsletters!

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:
800 Domino Designer 6: A Developer’s Handbook800 Domino Designer 6: A Developer’s Handbook

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 801

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

802 Domino Designer 6: A Developer’s Handbook802 Domino Designer 6: A Developer’s Handbook

Index

Symbols
$$Return field 115

link to Web pages 116
$$Return field example 117
$$ReturnAuthenticationFailure 344
$$ReturnDocumentDeleted 345
$$ReturnGeneralError 345
$$ViewTemplate form 344
$Anonymous 82, 214
$Conflicts 214
$Links 214
$Revisions 56, 214
$UpdatedBy field 56, 82, 214
($All) view name 191
($Inbox) view name 191
($Sent) view name 191
($Trash) view name 191
(Declarations) 94

for fields 122
(Options) 94

for fields 121
) 169, 279
.NSF file 31
.NTF file 48, 602
@Abstract 701
@Attachments 702
@ClientType 540
@Command

ToolsRunMacro 278
@commands

supported objects 563
@DbLookup 702
@DoWhile 382
@For 382
@Functions 564, 590, 605
@GetDocField 702
@GetField 702
@GetProfileField 702
@Text 702
@UserName 210, 540
@UserNameList 540
@UserRoles 538
@While 382
© Copyright IBM Corp. 2002. All rights reserved.
A
absolute positioning 417
access control 91, 104, 178, 240, 248, 501

@ClientType 540
@UserName 540
@UserNameList 540
@UserRoles 538
Authors Field 526
Combining Readers and Authors Fields 527
controlled access sections 529
Documents 524
ECL 542
files 545
for HTML and Other Files 545
Forms 521
hide when formulas 530
hiding the design of a database 541
HTML files 545
password field 541
Pasting Documents into Database 541
programming considerations 538
Using Encryption for Field Security 530
using signatures for security 542
Web access 551
workstation security 542

Access Control List 58
example 575
settings for creating agents 249

access list for views and folders 240
accessibility 115, 194, 202, 218, 220, 286, 313, 478
Accessing external data sources 40
accessing resources with WebDAV clients 491
accessing XSL 758
ACL 58

access levels 505
access levels for servers 506
access options 508
agents 508
Anonymous Access 509
basics 504
changing programmatically 517
Changing the ACL Programmatically 517
create documents 508
delete documents 508
 803

displaying 504
effective access 510, 554
Enforce Consistent ACL 516
groups 507
manager 506
Maximum Internet Name and Password Access
517
modifying 506
no access 505
public documents 509
roles 513
servers 507
setting up 506
User and Server Access Levels 505
user types 507
users 507
xACL 553

action bar 159, 469
background 160
buttons 158
properties 160
size 160

action bars 211
action object 590
actions 146, 158

adding to navigators 244
automating tasks 146
checkbox 440
computed labels 438
context sensitive 450
creating 147
hiding based on field values 450
in Actions menu 148
in navigators 242
menu separator 439
name 148
removing 148
shared 146
sub actions 444
system actions 438
type 148
typical 146

administration process 385
adminp 385
Advanced database options 53
advanced templates 49, 66
agent log 265
Agent Manager 271
AgentBase class 669

AgentContext class 262
agents 4, 248

access control 248, 410
access to operating system 250
accessing remote servers 407
acting on mail 253
acting on modified documents 254
acting on new documents 254
acting on pasted documents 254
alias name 251
allow remote debugging 410
background 63, 248, 590
background, disabling 63
builder 404
capturing CGI variables 275
changing documents 279
changing type of 410
creating 250
debugging 266
debugging examples 267
debugging, Notes.ini 272
debugging, server console 273
designing for multiple clients 345
disabling 263, 268, 405
disabling all background agents 270
enabling 263, 268, 405
enabling by users 268
execution rights 271
for Web applications 249
formulas 260
imported Java 261
Java 261, 581
log 263, 265
LotusScript 260
maximum execution time 271
naming 251
output 276
outputting files 276
personal 248, 252
private 410
redirecting 276
remote debugging 266
removing data from documents 279
renaming a field 279
restricted 249
restricted operations 410
restrictions 250, 406
rights to create 248
run by a user 264
804 Domino Designer 6: A Developer’s Handbook

run options 258
running 263
running an agent on different servers 255
running as a Web user 410
running multiple instances 276
running on behalf of someone else 406
running programmatically 278
scheduled 255
scheduled, disabling 268
scheduled, enabling 268
scheduling 253
security 406, 410, 555
selecting documents 256
server-based 542
serving a new page 276
shared 248, 252, 410
signing 263–264, 405
Simple Actions 259
simple actions 259
slow 271
testing 263, 265
triggered by programs 253
triggering 253
triggers 258
troubleshooting 270
unrestricted 249
user activated 409
user activation 268
user triggered 253
Web 274, 345
WebQueryClose 590
WebQueryOpen 249, 274, 277, 590
WebQuerySave 249, 274, 277

alias
of form 78

aligning
paragraph 112
tables 136

AllDocuments property 576
Allowing connections to external databases 64
Allowing headline monitoring 55
Alt + W 20
alternate text

hotspots 163
anonymous access 509, 552
anonymous form 82
API 699

for Notes 639
applets

adding CORBA 673
calls to lotus.domino package 676
DIIOP 673
rich text field 105

application design 343
application structure 304
application templates 48
archiving

documents 62
asynchronous agents 276
Attachment compression 56
authentication 535
authentication, basic 533
authentication, customizing 547
authentication, session-based 534
Authors Field 526
auto complete 30, 399
auto launch 87
auto refresh a field 632
AutoReload property 581
awareness 641

B
back-end classes 577, 606
background agents 63, 248
background color

forms 88
background graphic

in navigators 242
backup 548
Backup and Restore 548
Backup considerations 55
BASIC 564
bookmark folder 351
bookmarking an application 351
bookmarks 351
border

of cells 137
borders

tables 140
breakpoints 617
built-in functions 612
Button class 566
button formulas 158
button object 588
buttons

action bar 158
in navigators 242
 Index 805

C
calendar views 191, 205

conflict marks 206
creating 205

calling Java objects from LotusScript 395
CaretNoteID property 213
Cascading style sheets 36, 179
cascading style sheets (CSS) 330
categorizing a view 228
cells

border of 137
colors 137

cells in tables 134
CGI 115, 275
chat 641
checking for errors 379
Click event

example 588
Clients 5

administrator 8
detemining the type of client 540
Domino Designer 16
mixed releases 41
multiple 24, 341
Notes 5
separate forms 130

code, printing 361
code, recompiling 393
collaboration 641
collapsible sections 132
color 387
colors

for fields 111
of cells 137
unread documents 227

columns
reordering 453
using colors 445

COM 646
accessing Domino objects 648, 650
benefits over OLE 647
defined 647
enabling Lotus Domino Objects 653

Common Data Security Architecture (CDSA) 547
Common Gateway Interface 164

table of variables 164
using 115

Compacting a database 64
compile errors 613

Compressing attachments 56
computed subforms 127
computed text 156
ComputeWithForm method 579
connecting to databases 37, 40, 335
containment hierarchy 572
controlled access section 529
controlling access 501
conversation 641
Copy Database dialog box 58
copying

views 190
Copying an existing database 57
CORBA 637, 672
create Java agent 582, 679
CreateView method 460
creating

a navigator 243
agents 249
background in navigators 243
buttons 211
calendar views 205
collapsible section 132
computed subform 128
folders 239
forms 76, 284
nested tables 133
new database 59
pages 174
tables 133
views 187

Creating a database 48
creating a new outline 307
creating a replica of a database 386
creating a view 460
Creating documents 32
creating documents at view level 193
creating documents from view 454
CSS 36, 330, 342
Ctrl - Tab 20
CurrentDatabase property 574
custom design element folders 352
custom JSP tags 685
Customized Authentication, Encryption, Signing

APIs 547
customizing twisties 453
806 Domino Designer 6: A Developer’s Handbook

D
data 566
Data Connection Resource

creating 336
data connection resources 41, 86, 335

data source 335
data source options 339
default connection 338
enabling 337
key field 340
type 336

Data connections 40
Database 31, 47

$Revisions field 56
$UpdatedBy field 56
advanced options 53
allow soft deletions 55
allowing headline monitoring 55
allowing more fields in the database 56
compacting 64
copying 57
creating new 48, 50, 59
design information 71
design, inherit 66
Directory Catalog 61
Domino Directory 61
encryption 50
hidden design 58
information 64
Last Accessed property 54
Multi DB Search 61
ODS 64
properties 59
replica ID 64
size 64
specialized response hierarchy 55
templates 48
title 50
type 60
usage details 64
using a template 48

database 49
Database Catalog 66
Database icon 36
Database information 35
Database version 42
databases

database manager 549
enabling data connections 337

hiding the design 541
use JavaScript when generating pages 344

Date Picker
embedded 152

Date/Time values in views 233
DB2 335
DCR

See Data Connection Resources
debug mode 616
debugger 613

enabling 614
debugging 266, 613

remote 387
debugging agents 266
DECS 4, 40, 335
default form 81
default outline 306
default value

for fields 120
default view 192
delimiting strings 371
Design Document 22
design element locking 26, 66, 358

disabling 361
enabling 358
explicit lock 360
master lock server 358
provisional lock 360
unlocking 360

Design element properties 25
Design elements

database 47
Forms 75

design elements 31
absolute positioning 131, 133
hiding 530
information 354
locking 358–359
modifying properties 356
not allowed in layout regions 131
script libraries 631, 691
supported in frames 287
supported in pages 175, 178
supported in subforms 125
supported in tables 133
unlocking 360

design elements folder 21
design guidelines 209, 223, 241, 317, 341, 513,
596
 Index 807

Design pane 17
Design properties 66
Design refresh 66
Design synopsis 35, 71, 363

creating 71
creating the report 72
customized reports 363
DXL utilities 363
specifying content 73
using database for output 72

Design synopsis tool 224
Design upgrade 41
determining access level 510
Developing for multiple clients 24
DHTML 342
DIIOP 673
Directory 3
directory links 519
DisableRole method 575
disabling agents 268
disabling all background agents 270
Disabling background agents 63
disabling design element locking 361
disabling the debugger 615
distributing tools 481
Document ID 25
Document locking 8, 63
document retrieval 70
DocumentContext 253, 275
Documents

archiving 62
documents

access control 524
authors fields 526
changing associated form 280
creating from view 454
creating with a form 578
creating without a form 578
editor access 526
form used 580
read access 524
read access list 525
readers fields 524–525
sorting in views 237
stored in the database 577
viewing with different forms 580

Domino
accessing WebSphere 667
clients 5

clustering 5
connecting to databases 4
database 3
features 5
Object Model 4
reliability 5
replication 3
scalability 5
Server 2
services 2
Web application server 4

Domino Administrator 8
features 8

Domino Application Server 2
Domino Connectors 40
Domino Database 31
Domino database 47
Domino design elements 31
Domino Designer 14

adding tools 477
auto complete 400
basics 14
bookmark folders 20
custom design element folders 352
customizing the welcome page 16
Data Connection Resources 41
design element locking 358
design element navigator 348
design element views 356
design elements 31
Design elements folder 21
Design list 17, 19
Design pane 17
design pane 17
developing for mixed releases of clients 41
embedded elements 150
enabling applications with Sametime 642
expanding element lists 355
hiding a design element 24
InfoBox 22
inheriting the design 24
launch buttons 27
launching 14
layers 37, 131
layout 284, 417
LotusXSL processor 748
multilingual application 24
new elements 36
organizing applications 351
808 Domino Designer 6: A Developer’s Handbook

organizing databases 20–21
overview 14
previewing the design 98
Programmer’s pane 28
properties box 22
Sametime enabling applications 440
scrolling elements 354
shared code 349
shared resources 349
starting 14
templates 24
tools 477
Tools menu 481
type-ahead 399
WebDAV 490
Welcome page 16
window tabs 19
Work pane 19

Domino Enterprise Connector Services 335
Domino Enterprise Server 2
Domino Global WorkBench 39
Domino Mail Server 2
Domino Object Model 4, 565
Domino objects

events 586
Domino security architecture 501
Domino Server Family 1
Domino Server Services 2
Domino Web Server API 547
DominoAsynchronizeAgents 276
Don't show empty categories 196
Downgrading the database ODS version 42
DSAPI 547
DXL 38, 385, 481

tools 481
DXL Transformer Utility 364
DXL utilities 487, 746

Exporter 746, 762
Transformer 746, 763
Viewer 746, 762

E
ECL 264

See Execution Control List
editing a document in a view 456
functions

@Command(169
effective access 510, 554

embedded
Date Picker 152
file upload control 155
folder pane 153
navigators 151
outline 309
outline control 152
scheduling control 153
view 152

embedded elements 150
date picker 152
editor 432
embedded editor 151
file upload control 155
folder pane 153
group scheduling control 153
navigator 151
outline control 152
referring from another database 470
view 152

embedded outlines
hiding 314
root entry 312
sizing 312
target frame 311
types 311

embedded views
deleting documents 470
displaying for browser users 230
properties 232
targeting 231

embedding
views 230

embedding an editor 151
emdedded editors 432
empty categories 196
enabling application with Sametime 642
enabling design element locking 358
enabling the debugger 614
Encrypting databases 62
encryption 530

automatically 531
creating a secret key 531
field security 530
manually 531

Enforce Consistent ACL 516
Entering event

for fields 122
Entering information 32
 Index 809

enterprise integration technologies 40
ERP 40
error handler 613
Evaluate function 260, 607
events 586

action object 590
button object 588
Click 588
Entering 368
Exiting 368, 586
for field object 586
for fields 120
Initialize 95
InViewEdit 370
not available for subforms 126
OnBlur 369
onBlur 368
OnChange 369
onClick 93
OnDblClick 93
OnFocus 369
onFocus 368, 370
OnHelp 369
onHelp 93
onKeyDown 93
onKeyPress 94
onKeyUp 94
onLoad 94, 368
onMouseDown 94
onMouseMove 94
onMouseOut 94
onMouseOver 94
onMouseUp 94
onReset 94
onSubmit 94, 369
onUnload 94, 370
PostEntryResize 369
Postmodechange 95
PostOpen 368
Postopen 94, 583
Postrecalc 95
PostSave 95
PostSend 369
QueryClose 368
Queryclose 95
QueryEntryResize 369
Querymodechange 95
Queryopen 94
QueryRecalc 369

QuerySave 95, 368
Querysave 609
QuerySend 370
sequence of 590, 594
Terminate 95
WebQueryOpen 93
WebQuerySave 93

events in Notes 583
example

Java agent 581, 679
JavaScript 632, 634–636
using Java Notes classes 680

examples
accessing a field 575
accessing an ACLEntry 575
Click event 583, 588
Evaluate function 608
Exiting event 586
Messagebox statement 620
Postopen event 583
Print statement 619

Execution Control List 264, 542
maintaining 544

Exiting event
example 586
for fields 122

Explicit lock 26
exporting files 324
extended access control list 553
Extending Notes with other products

Notes API 639

F
Field class 566
field events 120
field object 586
field validation 379
fields 33

$$Return 115
(Declarations) 122
(Options) 121
aligning with baseline 462
allow values not in list 110
authors 104, 526
Color 104
color 428
colors 111
computed 108, 122
810 Domino Designer 6: A Developer’s Handbook

computed for display 108, 122
computed when composed 109, 122
connecting to external data source 338
creating 95
data types, stored 578
date/time 103, 123
default value 120
deleting 279
editable 108, 122
enabling encryption 532
Entering event 122
examples of using 122
excluding from field index 127
Exiting event 122
field hint 111, 124
field hints 461
fonts 111
giving a name 96
help 111
help information 111
hide delimiters 110
hide-when 97, 113
HTML attributes 120
Initialize event 122
input translation 120, 124
input validation 120, 124
keyword lists 103–104
manipulating with LotusScript 578
multi-value separator 111
names 104
native OS style 463
new types 428
not supported on Web 344
number 103
onBlur event 121
onChange event 121
onClick event 121
onFocus event 121
onKeyDown event 121
onKeyPress event 121
onKeyUp event 121
onMouseDown event 121
onMouseMove event 121
onMouseOut event 121
onMouseOver event 121
onMouseUp event 121
onSelect event 121
OS style 131
password 104, 541

properties 107
readers 104, 525
refresh on keyword change 110
refreshing choices 110
renaming 279
reserved 214, 598
rich text 103
rich text lite 429
security 111
shared 101
showing in views 699
sizing 461
special 115, 120
specifying properties 96
summary vs. non-summary 699
tab order 109
Terminate event 122
text 103, 123
time zone 104, 431
types 102

file repository 322
file resources

creating 323
exporting 324
opening 323
previewing 326
refreshing 323
using 323

file upload control
embedded 155

folder pane
embedded 153

folders 33, 239, 351
access list 240
creating 239
description 185
personal 240
shared 240
write access 241

fonts
for fields 111

footer 65
forcing to declare variables 397
forms 32, 76

$$ReturnAuthenticationFailure 344
$$ReturnDocumentDeleted 345
$$ReturnGeneralError 345
$$ViewTemplate 344
$Anonymous field 82
 Index 811

$UpdatedBy field 82
access control 520
alias 78
alias name 130
anonymous form 82
assigning to documents 580
auto launch 87
automatically enabling edit mode 85
background color 88
background properties 88
computed text 156
converting data to XML 749
Create dialog 80
Create menu 80
creating 76, 284
creating a header 89
customized error messages 344
Data Connection Resources 86
default data connection 338
default form 81
disable printing, forwarding and copying to clip-
board 92
elements 76
embedding forms 432
embedding views 152
entering data into a database 76
events 92
focus 82
frameset option 87
generate HTML for all fields 85
header and footer 89
hiding 130
hierarchical structure 79
horizontal rule 156
HTML in Notes client 464
HTML type of content 327
importing graphics 88
inherit entire document 84
inherit values 84
inserting embedded editor 432
keyboard shortcut 79
layers 171, 417
limiting access 91
multilingual applications 79
multiple views 470
naming 78
previewing 98
printing properties 90
profile 168

profile, creating 169
properties 76
providing comments 79
public access users 523
refresh fields automatically 81
Render pass through HTML in Notes 82
render pass through HTML in Notes 464
replication conflicts 83
response 79
response to response 79
save conflicts 83
sections 467
security 91
select for display 130
settings required for XML 751
sharing elements 125
signing documents 82
special forms 344
store form in document 81
stored 63
title 92
type of content 85
using different for each client 343
using resources 319
version control 80
versioning 80

formulas 590
hide-when 603

formulas, looping 382
formulas, using in agents 260
frames

adding a Web page 289
adding an object 288
borders 291
elements 287
naming 287
scrolling 290
sizing 290

frameset 31
for forms 87

framesets
basics tab 285
displaying views in 344
layout 296
naming 285
previewing 297
properties 285–286
sizing 290
window title 285
812 Domino Designer 6: A Developer’s Handbook

front-end classes 566, 577, 606
full access administrators 513
Full text search engine 3
Full-text index 70
full-text index 70, 256
full-text search 70
functions 370, 562, 596

@Abstract 701
@AllDescendants 236
@ClientType 129, 538
@Created 124, 234
@Date 124
@DBColumn 108, 123
@DbName 373
@dbname 380
@DocumentUniqueID 118
@DoWhile 382
@Elements 123
@Environment 543
@For 382
@If 119
@IsError 123
@IsMember 113
@ProperCase 124
@RefreshECL 544
@Return 123
@Round 123
@Servername 380
@Set 373
@Setfield 373
@Statusbar 379
@Subset 373
@subset 380
@Text 118, 702
@ThisValue 124
@URLOpen 278
@UserName 538
@UserNamesList 538
@UserRoles 538
@WebBDbName 181
@WebDBName 118
@While 373, 382
arrays 372
auto complete 403
list of new @functions 373
looping 382
new @commands 381
referring to array elements 372

G
generate HTML for all fields 85
generateXML method 780
GetFirstDocument method 574, 576
GetFirstItem method 574
GetNextDocument method 576
getUnprocessedDocuments 262
GetView method 574
grouping design elements 353, 417

H
header 65
header and footer 89
help 36

field hint 111, 124
for fields 111

Hidden design 58
hide when formulas 530
hide-when formulas 603
hiding

views 191
Hiding a design element 24
hiding design elements 131
hiding paragraphs 113
horizontal rules 156
hotspots 158

alternate text 163
HTML 412

adding code using HTML Pane 414
auto complete 403
HTML body attributes 93
HTML head attributes 93
HTML pane 412
in Notes client 464–465
pass-thru HTML 412
properties 114
rendering pass through HTML in Notes 127

HTML attributes for body field 120
HTML body attributes 93
HTML content 327
HTML files 322, 325
HTML head attributes 93
HTML header 276
HTTP Basic Authentication 533

I
IDE 564
image resources 161
 Index 813

refreshing 319
images 161

as a shared resources 318
creating 318
guidelines 342
image wells 320
replacing with other techniques 342
supported formats 318

importing graphics
into forms 88

importing pictures 162
Improving performance 53–54, 56
indexing, full-text 70
Info List 28
InfoBox 22
Information about document usage 54
inherit entire document 84
Inherit future design changes 52
inherit values 84
Inheriting the design 24
Initialize event 95

for fields 122
iNotes Access for Microsoft Outlook 10
iNotes Web Access 10
input from Web in rich text 105
input translation 609
input translation for fields 120
input validation 609
input validation for fields 120
instant messaging 641
Integrated Development Environment 564
Internet Authentication

When to Use Internet Security 537
Interoperability 41
InViewEdit 455
InViewEdit event 193
iterating 382

J
Java 4, 253, 261, 274, 581, 669

accessing from LotusScript 582
adding CORBA support to applets 673
agents 671
applets 671
applications 671
calling from LotusScript 395
CORBA 672
differences between agents and applets 672

JSP 684
Notes class implementation 669
servlets 683
using in agents 261
XML 779

Java agent 582, 672, 679
creating a agent 679

Java applet 672
Java files 669
Java Notes classes 678, 680
Java program 673
Java programming 38
Java Server Pages 684
JavaScript 179, 274, 278, 343, 346, 621

add to form or field 631
Domino object model 624
Example4 635
examples 633–634, 636
in Notes client 465
JS Header 93
Library 631
LiveConnect 636
onBlur 622–623
onChange 100, 621, 623, 633–635
onClick 622–623
onDblClick 622
onFocus 622–623
onHelp 622
onKeyDown 622
onKeyPress 622
onKeyUp 622
onLoad 94, 622
onMouseDown 622
onMouseMove 622
onMouseOut 622
onMouseOver 622
onMouseUp 622
onReset 94, 622
onSubmit 94, 119, 622
onUnLoad 622
onUnload 94

JavaScript function 632
JavaScript libraries 343, 350, 367

inserting into JS Header 350
Javascript Object Hierarchy 624
JDBC 40
JS Header 93
JSP 38, 684
JSP custom tag libraries 38
814 Domino Designer 6: A Developer’s Handbook

JSP files 322
JSP tags 685

accessing Domino databases 688
using in Domino 686

K
keyboard shortcut

forms 79

L
language tagging 466
Last Accessed property 54
Launch Buttons 27
Launch options 67
Launching a frameset automatically 68
Launching Pages 180
layers 37, 131, 171, 181, 417

adding elements 423
creating 417
example 421
hiding 420
HTML properties 420
Layer Tree 421
on the Web 427
overlapping 425
positioning 418, 424
size 419
stacking order 419
Z-Index 419

layout 284, 417
layout regions 131
LDAP 3
LEI 41
listing documents 33, 184
localizing applications 39
Lock documents 8
Locking 26
locking a design element 359
logging 265
logical errors 614
looping 382
Lotus Enterprise Integrator 41
Lotus Notes 6 client 5
Lotus Sametime 641
LotusScript 4, 253, 274, 343, 384, 395, 563, 583,
590, 605, 670

(Declarations) 94
(Options) 94

accessing a field 576
accessing Java objects 395
auto complete 401
back-end 577
benefits of 564
connecting to Java 565
cross-platform 564
declaring variables 574
DocumentContext property 275
front-end 577
functions 596
initializing variables 574
looping 576
LS2J 565
onLoad 94
onUnload 94
performance 596
programming tips 596
subroutines 596
using Domino objects 573
using front-end classes 577
using in agents 260
using in navigators 244
using methods 574
working with arrays 398
XML 763

LotusScript to Java 395
LS2J 582

accessing methods 396
enabling 395
finding a class 396
getting an object 396
JVM 396
limitations 397
making a connection 396

LSX 565
LZ1 compression 56

M
margins

tables 141
maximum Internet name & password access 342
Merging conflict documents 83
Messagebox statement 620
Messaging 3
Mixed releases of clients 41
Mobile clients 9
modifying properties for multiple elements 356
 Index 815

mouseover 354
Multilingual applications 24, 39, 67
Multilingual database 67
multi-pane interface 284
Multiple clients 39
multiple views on a page or form 470
multi-value separator

for fields 111

N
naming

a form 78
an agent 251

naming views 223
navigating 304
Navigator class 566
navigators 35, 242

actions 242
description 186
elements to be used instead of 242
embedded 151
objects 242

nested tables 133
creating 133

new @commands 381
new @functions 373
New Database dialog box 50
new features 347
New Features of Domino Designer 36
new LotusScript classes 384
new users 537
Not 505
Notes

bookmarks 6
calendaring & scheduling 7
customizing 7
customizing mail 7
document locking 8
features 5–8
histoty folder 6
mail 7
portal 6
startup folder 6
usability 6
welcome page 6

Notes API 639
Notes classes 564, 583

Button 566, 583

Field 566
hierarchical relation 572
Navigator 566
NotesACL 567
NotesACLEntry 567, 575
NotesAdministrationProcess 567
NotesAgent 567
NotesColorObject 572
NotesDatabase 567, 576
NotesDateRange 569
NotesDateTime 569
NotesDbDirectory 567
NotesDocument 567, 576
NotesDocumentCollection 567, 576
NotesDOMDocumentNode 568
NotesDOMElementNode 568
NotesDOMNode 568
NotesDOMNodeList 568
NotesDOMParser 640
NotesDXLExporter 569, 641, 748
NotesDXLImporter 569, 641, 748
NotesEmbeddedObject 569
NotesForm 570
NotesInternational 570
NotesItem 569
NotesLog 570
NotesMIMEEntity 570
NotesMIMEHeader 40, 570
NotesName 570
NotesNewsLetter 570
NotesNoteCollection 570, 641
NotesReplicationEntry 571
NotesRichTextDocLink 571
NotesRichTextItem 569
NotesRichTextNavigator 571
NotesRichTextRange 571
NotesRichTextSection 571
NotesRichTextStyle 569
NotesRichTextTable 571
NotesSAXParser 640
NotesSession 567, 574–575
NotesStream 40, 640
NotesTimer 566, 570
NotesUIDatabase 566
NotesUIDocument 566
NotesUIScheduler 566
NotesUIView 566
NotesUIWorkspace 566
NotesView 567
816 Domino Designer 6: A Developer’s Handbook

NotesViewColumn 567
NotesXMLProcessor 572
NotesXSLTransformer 572, 640, 748

Notes URL 289
Notes/FX 81
NotesACL class 517, 567
NotesACLEntry class 517, 567, 575
NotesAdministrationProcess class 385
NotesAgent class 567
NotesColorObject class 387, 706, 726

to set rich text color 711
NotesDatabase class 261, 460, 563, 567, 576
NotesDateRange class 569
NotesDateTime class 569
NotesDbDirectory class 567
NotesDocument class 563, 567, 576
NotesDocumentCollection class 262, 567, 576
NotesDOMParser class 385, 771
NotesDXLExporter class 385
NotesDXLImporter class 385, 778
NotesEmbeddedObject class 569, 706, 718
NotesFactory method 675
NotesForm class 570
NotesInternational class 570
NotesItem class 569
NotesLog class 266, 570
NotesMain method 669
NotesMIMEHeader class 40
NotesName class 570
NotesNewsLetter class 570
NotesOutline 570
NotesOutlineEntry 570
NotesRegistration 570
NotesReplication 570
NotesReplicationEntry class 386
NotesRichTextDocLink class 706, 718
NotesRichTextItem class 569, 706
NotesRichTextNavigator class 706, 717
NotesRichTextParagraphStyle 571
NotesRichTextParagraphStyle class 706, 712
NotesRichTextRange class 706, 718, 728
NotesRichTextSection class 706, 718
NotesRichTextStyle class 706, 709
NotesRichTextTab class 571, 706
NotesRichTextTable class 706, 718
NotesSAXParser class 385, 774
NotesSession class 253, 275, 563, 567, 574–575
NotesStream class 40, 386
NotesThread Class 678

NotesTimer class 570
NotesUIDatabase class 566
NotesUIDocument class 566
NotesUIView class 254, 566
NotesUIWorkSpace class 566
NotesView class 567
NotesViewColumn class 567
NotesViewEntry 571
NotesViewEntryCollection 571
NotesViewNavigator 572
NotesXSLTransformer class 385, 770
Nothing, special value 576
NSF file 31
NTF file 48, 602
numbers in views 235

O
object events 368
object sharing 641
Object store 3, 31
object-oriented programming language 563
Objects View 28
ODBC 198, 335
ODS 42, 64
ODS versions 42
OLE 564, 647
On Error 266
On Error statement 612
onBlur 633
onBlur event

for fields 121
onChange event

for fields 121
onChangeIndex

#
 633

onClick event 93
for fields 121

OnDblClick event 93
On-Disk Structure

See ODS
onFocus event

for fields 121
not triggered 122

onHelp event 93
onKeyDown event 93

for fields 121
onKeyPress event 94
 Index 817

for fields 121
onKeyUp event 94

for fields 121
onLoad event 94
onMouseDown event 94

for fields 121
onMouseMove event 94

for fields 121
onMouseOut event 94

for fields 121
onMouseOver event 94

for fields 121
onMouseUp event 94

for fields 121
onReset

JavaScript 94
onReset event 94
onSelect event

for fields 121
onSubmit 94, 368
onSubmit event 94, 119
onUnload 94, 368
onUnload event 94
OpenFileResource 490
OpenImageResource 490
Option Declare 600
Option Public 596, 600
Organizing databases 20–21
outline

creating 307
default, generating 306

outline control
embedded 152

outline entry
alias name 305
indenting 307
naming 305
outdent 307
target frame 306
type 305

outlines 304
adding entries 305
background 313
computed 435
customizing 436
DesignTools 482
embedded 309, 311
embedding 309
inserting based on a formula 435

Java applet 313
naming an entry 305
show folder unread count 436

P
pages 32, 174

background 176
creating 174
designing 179
displaying information 174
events 178
home page 174
inside a frameset 180
launch properties 177
launching 180
launching automatically 181
layers 181, 417
limiting access 178
linking 180
multiple views 470
naming 176
properties 175
response messages 174
sections 467
security 178
title 175
using XML 751
Web 174
window title 175

paragraphs
aligning 112

pass through HTML 127
Pass-Thru-HTML in views 219
Password Field 541
pasting documents 541
Perfomance 53
performance 198, 216, 604, 609

of forms 603
of LotusScript 596

performing administrations tasks 385
performing tasks 248
personal views 210
personal-on-first-use views 210
pictures 161
positioning design elements 37, 417
Postmodechange event 95
Postopen event 94

example 583
818 Domino Designer 6: A Developer’s Handbook

Postrecalc event 95
PostSave event 95
preventing printing, forwarding and copying docu-
ments 524
preview

in Notes client 98
in Web browser 99

Preview pane 69
previewing documents in embedded editor 433
Previewing in Notes 27
Previewing with Web browsers 27
print options 65
Print preview 65
Print statement 276, 278, 619
printing code 361
private agents 410
private views 187
profile documents 168, 703, 715

accessing 168–169
creating 169
deleting 170

Programmer’s Pane 28
Programmers Pane 28
Programming 38
programming

@commands 562
@functions 562
accessing Domino objects 565
accessing field values 581
accessing items 578
accessing stored data 577
ACL 517
back-end classes 566
choosing a language 558
COM 646
creating views 460
different languages 558
Domino Object Model 565
errors 603
for Web 563
forcing to declare variables 596
formula language 562
Java 581
JavaScript 343
LotusScript 563
open documents 580
rich text fields 581
run-time errors 612
Simple Actions 559

using a template database 602
XML 640, 764

programming a Java program 678
Properties

of databases 59
properties

fields 107
forms 76

Properties dialog 22
Public Access

views 199
Public Access Users 523
Public Access users 92
putAllInFolder 262

Q
Queryclose event 95
Querymodechange event 95
Queryopen event 94
QueryOpen form event 278
QueryPaste event 254
QuerySave event 95
QuerySave form event 278

R
R4 41, 51
R5 41
Read Access List

Form 525
ReadViewEntries 490
recompile all 393
recompiling code 393
Redbooks Web site 800

Contact us xxii
redirecting 519
Reference View 29
Refresh design 66
refresh fields automatically

in forms 81
Refresh method 609
registering users 537
Relational databases 40
relational databases, connecting to 335
Reload method 609
remote debugger 387, 619
remote debugging

allowing 388
connecting to an agent 392
 Index 819

enabling an agent 389
enabling on the server 388
enabling TCP/IP port 388
permission to run agents 388
remote debugger manager 388
security 388
starting 391
turning of automatically 388

render pass through HTML in Notes 82
Replication 3
replication conflicts 213
Requiring SSL connection 62
reserved fields 214
reserved names

for views 191
response documents

indenting in views 192, 236
Response forms 79
response message to Web users 115
response messages 278
Response to Response 79
response to response

forms 79
restore 548
restricted agents 249
Resume statement 613
returning to another page 115
returning user groups 540
returning user name 540
returning user roles 538, 540
Rich text 697

@functions 701
AddNewLine method 707
AddPageBreak method 707
AddTab method 707
appending 706
AppendRTItem method 715
AppendTable method 717
AppendText method 707
copying to a document 714
creating 706
default value 703
defined 698
doclinks 713, 720
file attachments 727
File attachments, copying 703
front-end vs. back-end 703, 705, 732
GetFirstItem and 707
GetNotesFont method 711

hide attributes 698
import an image 736
locating inside rich text 719
Notes C and C++ APIs 699
paragraph size limit 699
paragraph styles 712
search and replace 730
sections 713
table, background colors 726
tables, filling in data 724
text styles 709

rich text field
applet 105

Roles 91
roles 241, 513, 539

adding 514
assigning to users 515
defined 514
on local replicas 516
restricting access 514

run-time errors 612–613

S
Sametime 440, 641

enabling applications 643
integration example 643

Sametime enabling applications 642
Sametime link 643
save conflicts 213
SaveOptions 278
scheduled agents 255
scheduling control

embedded 153
Script Area 30
Script libraries 34, 37
script libraries 600

signing 408
search 70
Search Builder

views 189
section styles 467
Secure Sockets Layer 535
Securing the connection 62
security 3, 51, 54, 66, 178, 199, 342, 499

access control 91, 104, 199, 248, 501–502
Access Control List 58
access control list 501, 504
access levels 505
820 Domino Designer 6: A Developer’s Handbook

access to forms 520
access to public documents 509
access to views 520
ACL 58, 501–502, 504
agents 544, 555
anonymous access 503, 509, 552
authentication 533, 535
certificate authority 535
controlling document pasteing 541
customizing authentication 547
design issues 549
determining access level 510
directory links 519
effective access 554
encrypting connection 535
encryption 51, 530
File Protection document. 546
for fields 111
form access list 522
forms 91
full access administrators 513, 516
hiding elements 518
Java 544
JavaScript 544
maximum Internet name and password access
517
overriding 513
overview 501
password 533
plan 548
preventing printing, forwarding and copying 524
Public Access users 92
roles 91, 513, 549
server-based agents 542
session-based authentication 534
signing 82
SSL 62
stored forms 63
true security features 552
user name 533
using outlines 518
view access list 520
Web user access 551
workstation 542

server console 273, 411
Server tasks

design 66
servlets 683

invoking 684

running in Domino 684
setting

window title 93
Setting a size limit for a database 52
setting field values 373
Setting properties 22
Setup information 168
shared agents 410
Shared Code 33, 37, 367

agents 33
design elements 349
outlines 33
script libraries 34
shared fields 34
subforms 34, 125

shared field
debugging 597

Shared fields 34, 101
shared resources 34, 37, 365

accessing with WebDAV clients 491
applets 34, 329
creating a new image 318
data connections 34, 335, 366
design elements 349
files 34, 322
horizontal image sets 321
images 34, 161, 318, 342
inserting on a form 320
inserting on a page 320
opening 318
style sheets 34, 330, 366
vertical image sets 321

shared views 187, 210
Sharing code 37
sharing design elements 125, 349
sharing files 322
sharing program code 349
sharing resources 349
Signatures 542
Signing a Database 545
signing a database 264
signing an agent 264
Simple Actions

examples 559
simple actions, using in agents 259
Size limit 51–52
sizing framesets 290
Soft deletions 55
specifying content language 466
 Index 821

SSL
See Secure Sockets Layer

stampAll 262
Standards 38
starting the remote debugger 391
store form in document 81
stored form, removing 280
Stored forms 63, 81
storing

documents in databases 577
Storing data 32
Storing the form on a document 63
style sheet resources 330

creating 330
editing 334
exporting 334
inserting into a form 331
inserting into a page 331
opening 334
pass-through HTML 417
refreshing 334
supported Notes elements 333
using on forms and pages 417

subforms 125
available elements 125
computed 127
creating 125–126
properties 127
removing 127
Web 346

Submit button 158
subroutines 596
Summary fields 699
Supporting older releases 41

T
tables 131, 133

autosizing 471
borders 140
caption styles 473
collapsible 143
margins 141
merger cells 134
split cells 134
style 138
switching rows programmatically 145
tabbed 141
tabs 472

Target Frame 93
tasks, running periodically 248
Team development 26
team development 26, 353, 358, 387, 490
tell amgr commands 273
Templates 24
templates 48, 602

advanced 66
Temporary lock 27
Terminate event 95

for fields 122
Testing applications 27
The Event Model 583
There 373
title

of forms 92
To 391
tools 477, 481, 490

adding 478
customizing 479
DXL utilities 746, 761
submenu 479

functions
@Command(279

transaction logging 55, 548
transforming XML 364, 489
transformXML method 781
Translating applications 39
troubleshooting 270
trusted servers 407
twisties, customizing 453
type 79
type-ahead 399

U
UDDI 788
UIDocument class 563
UIWorkspace class 563
Unlock documents 8
unlocking a design element 360
UnprocessedDocuments 261
unread documents 227

styles 227
views 227

unread marks 53
disabling 227

unrestricted agents 249
Upgrade path 41
822 Domino Designer 6: A Developer’s Handbook

Upgrading 41
Upgrading the database ODS version 42
URL open, disallowing 62
URLs 490
Use JavaScript when generating pages 62
Use statement 600
user activity 64
user customized views 453
user interface 146, 284, 304
user registration 537
user scripts 563, 600
User-specific information 168
using 88
using colors in view columns 445
using other development tools 490
using pages 178
using the debugger 617–618

V
validating field values 379
validating input 278
variables

declaration of 596, 600
naming of 597

version control 80
forms 80

view
embedded 152
InViewEdit event 193
resizing columns 192

View Access List 520
view applet 198
view columns

HTML in column formulas 221
HTML in headers 220
icons in headers 220
numbers 235
styles 226
time/date columns 233

view index 197
view logging 198
View templates

menu actions 222
Viewing information 33
views 33

access control 520
access list 240
actions 193

addind actions 213
adding HTML to 221
Advanced tab 197
alias 191, 223
background 195
background images 452
backup 198
calendar 191
calendar type 205
cascading 188, 224
categorized 203, 228
changing the name 223
collapsing on open 229
colors 196
column colors 445
column properties 200
context sensitive actions 450
copying 190
creating 187
creating documents 454
creating documents at view level 193
creating programmatically 460
customized icons 451
customizing 192, 201
default 192
default Web layout 216
description 184
design 213
designing 208
displaying different columns to users 459
displaying for Web browsers 344
don’t show empty categories 196
editing documents 456
editing documents in view 202
embedded 230
embedding 230
flat 203
formatting Date/Time values 233
formatting numbers 235
grid 195, 452
hiding 191, 224
hiding columns 459
HTML 218
indenting response documents 236
index 197
InfoBasic tab 190
inspecting form fields 214
InViewEdit 456
Java applet 198
 Index 823

Java applet for display 217
launch properties 197
layout 206
margins 196
multiple lines per row 225
naming 187, 223
ODBC 198
open as last-used 229
Option tab 191
Pass-Thru-HTML 219
performance 216, 221
personal 211
presenting documents in XML 751
presenting to users 229
private 187, 210
programmatic use 204
properties 190
properties not supported on the Web 222
Public Access 199
re-evaluating 193
refreshing 194
reordering columns 192
reserved names 191
response documents 236
response hiearchy 236
Search Builder 189
Security tab 199
selection formula 188
shared 187, 210
show single category 210, 233
showing data as XML 490
showing icons in columns 201
showing response documents 192
sorted, automatically 237
sorted, by user 237
sorting 203, 237, 239
sorting documents 237
sorting rules 238
sorting, by multiple columns 238
Style tab 195
styles 224
sub-categories 229
transaction logging 198
twisties 202, 453
type of 187
unread documents 196, 227
unread marks 225
user customizations 192, 453
using categories 228

using on the Web 215
Web navigation 222
Web, contents as HTML 220
Web, HTML 219
Web, icons 219
Web, spacing 219

Virtual Activities 41
Virtual Agents 41
Virtual Documents 41
Virtual Fields 41
Visual Basic 564

W
Web

agents 345
CGI 115
defining users 537
entering rich text 105
events 368
features not available 342
images 342
LotusScript 590
personalized message 116
providing user interface 344
response message 115–116
subforms 346
user interface 284
using agents 274
using dedicated forms 343
validating data 278
view navigation 218
views 344

Web Administration 8
Web application server 667
Web server 4
Web service

defined 788
Domino 789
invoking 788
UDDI 788
WSDL 788
XML 788

Web services 787
Web site

multilingual 39
WebDAV 329, 490

accessing resources 492
clients 491
824 Domino Designer 6: A Developer’s Handbook

design locking 491
disable session authentication 492
editing elements 494
enabling 491
enabling databases 491
enabling on a server 491
system requirements 492
Web server 492
Web Site document 491

WebQueryClose 590
WebQueryOpen 277, 590
WebQueryOpen event 93
WebQuerySave 277
WebQuerySave event 93
WebSphere 667, 688
WebSphere Application Server 667
Welcome page 16

customizing 16
Domino objects 16
JavaScript Object Model 16
Recent Databases tab 17

what is new in Domino 6 347
Window Tabs 19
window title 93
Work pane 19
Workflow 4
workflow 254
working with open documents 580
WSDL 788
WYSIWYG 174

X
XLS 489
XML 38, 364, 385, 744

compared to HTML 744
creating programmatically 764
defined 744
describing the presentation 745
describing the structure of the data 745
document type definition 745
DOM API 746
Domino objects for DXL 748
DXL 746
exporting data 748
exporting for elements 488
for design elements 487
importing data 748
in Domino 746

Java 779
LotusScript 763
modifying data in Domino database 748
presenting data 746
SAX API 746
showing view data 490
style sheets 756
transforming 489, 745
using a XSL stylesheet in Domino 758
using in Domino Designer 749
XSL 745
XSLT 745

XML tools 761
XSL 364
 Index 825

826 Domino Designer 6: A Developer’s Handbook

(1.5” spine)
1.5”<->

 1.998”
789 <

->1051 pages

Dom
ino Designer 6:

A Developer’s Handbook

®

SG24-6854-00 ISBN 073842658X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Domino Designer 6:
A Developer’s Handbook

Develop applications
for Notes, Web and
Mobile clients

Programming with
Domino Designer 6

New features of
Domino 6

In this IBM Redbook, we describe how to develop applications
with IBM Lotus Domino Designer 6. With Domino Designer,
you are able to create applications hosted by a Domino server.
These applications can be used by different clients, such as
Notes clients, Web browsers or mobile devices.

We introduce, and show in detail, how you can use all the
design elements of Domino Designer, such as forms, pages,
views, agents, outlines, resources and framesets. Readers
who are familiar with developing applications using Release 5
of Lotus Domino may want to start at Chapter 12, which
introduces the new features in Domino 6.0, and continue from
there.

In the chapters towards the end of the book, we discuss
different programming languages, @functions, LotusScript,
JavaScript, and Java, that can be used in Domino. We
describe in detail how to manipulate rich text objects by
programming, as well as XML, in Domino.

This redbook was written for technical specialists, developers
and programmers, customers, IBM Business Partners, and
the IBM and Lotus community who need technical
understanding of how to develop applications using IBM Lotus
Domino Designer 6.0.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. What is Lotus Notes/Domino
	1.1 Domino 6 Server
	1.1.1 Domino Messaging Server
	1.1.2 Domino Enterprise Server
	1.1.3 Domino Utility Server
	1.1.4 Services offered by Domino Servers

	1.2 Clients for Domino 6
	1.2.1 Lotus Notes 6
	1.2.2 Domino Designer 6
	1.2.3 Domino Administrator 6
	1.2.4 Mobile clients
	1.2.5 iNotes

	Chapter 2. Lotus Domino Designer
	2.1 Overview
	2.2 Working in Domino Designer
	2.2.1 Launching Domino Designer
	2.2.2 The Domino Designer client
	2.2.3 The Design pane
	2.2.4 The tabbed windows
	2.2.5 The Bookmark folders
	2.2.6 The Design elements folders
	2.2.7 The Properties dialog
	2.2.8 Design element locking
	2.2.9 The Launch buttons
	2.2.10 The Programmer’s Pane

	2.3 Domino Design elements
	2.3.1 The Domino database
	2.3.2 Frameset
	2.3.3 Pages
	2.3.4 Forms
	2.3.5 Views
	2.3.6 Folders
	2.3.7 Shared code
	2.3.8 Shared resources
	2.3.9 Other

	2.4 New elements of Domino Designer 6
	2.4.1 Cascading style sheet (CSS)
	2.4.2 Layers
	2.4.3 Shared code and shared resources
	2.4.4 LotusScript, JavaScript and Java libraries
	2.4.5 Data connections
	2.4.6 DXL utilities
	2.4.7 JSP custom tag libraries

	2.5 Industry Standards support
	2.6 Multi-client applications support
	2.7 Multilingual applications support
	2.8 Easy access to enterprise data and applications
	2.9 Developing for mixed releases of clients
	2.9.1 On-Disk Structure

	Chapter 3. Domino Design elements: basics
	3.1 Domino databases
	3.1.1 Creating a database
	3.1.2 Changing the database properties

	3.2 Using Design Synopsis
	3.3 Summary

	Chapter 4. Domino Design elements: forms
	4.1 Forms
	4.1.1 Specifying form properties
	4.1.2 Giving the form a window title
	4.1.3 Form events

	4.2 Creating a field
	4.2.1 Performing a test run
	4.2.2 Sharing and reusing a field
	4.2.3 Field types
	4.2.4 Field properties
	4.2.5 Special fields
	4.2.6 Field events
	4.2.7 Examples using different field types and events

	4.3 Sharing design elements with subforms
	4.3.1 Creating a new subform
	4.3.2 Removing subforms
	4.3.3 Adding subforms to a form

	4.4 Displaying a different form to Web, Notes, and mobile users
	4.5 Layout regions
	4.6 Working with collapsible sections
	4.6.1 Creating a collapsible section

	4.7 Using tables
	4.7.1 Creating tables within tables
	4.7.2 Merging and splitting cells
	4.7.3 Table properties

	4.8 Actions
	4.8.1 Creating an action
	4.8.2 Removing an action
	4.8.3 Action properties
	4.8.4 Action bar properties

	4.9 Embedded elements
	4.9.1 Embedded editors
	4.9.2 Embedded navigators
	4.9.3 Embedded date picker
	4.9.4 Embedded outline control
	4.9.5 Embedded view
	4.9.6 Embedded group scheduling control
	4.9.7 Embedded folder pane
	4.9.8 Embedded file upload control

	4.10 Other features of forms
	4.10.1 Horizontal rules
	4.10.2 Computed text
	4.10.3 Buttons, Action bar buttons, and hotspots

	4.11 Images within forms
	4.11.1 Copying images
	4.11.2 Importing pictures
	4.11.3 Using Image Resource
	4.11.4 Alternate text

	4.12 Using CGI variables
	4.12.1 Table of CGI variables supported by Domino
	4.12.2 Using a field to capture CGI variables
	4.12.3 Using a LotusScript agent to capture CGI variables

	4.13 Profile documents
	4.13.1 Creating a profile form
	4.13.2 Creating and retrieving profile documents using LotusScript

	4.14 New features in Domino Designer 6
	4.15 Summary

	Chapter 5. Domino Design elements: pages
	5.1 What is a page
	5.2 Creating a new page
	5.2.1 Specifying page properties

	5.3 Page events
	5.4 Using pages
	5.4.1 Launching pages

	5.5 New features in Domino Designer 6
	5.6 Summary

	Chapter 6. Domino Design elements: views, folders, and navigators
	6.1 Design elements defined
	6.1.1 What is a view
	6.1.2 What is a folder
	6.1.3 What is an outline
	6.1.4 What is a navigator

	6.2 Creating views
	6.2.1 Working with view properties
	6.2.2 Editing View columns
	6.2.3 Creating Calendar views
	6.2.4 View summary

	6.3 Shared views and private views
	6.3.1 Shared views
	6.3.2 Shared, Personal-on-first-use views
	6.3.3 Personal views

	6.4 Creating a button on the Action bar
	6.5 Working with views as a developer
	6.6 Views and the Web
	6.6.1 Using the default display
	6.6.2 Using HTML formatting for views

	6.7 Hints and tips on designing views
	6.7.1 Naming views
	6.7.2 Overview of styles
	6.7.3 Identifying unread documents
	6.7.4 Using categories in views
	6.7.5 Presenting views to users
	6.7.6 Embedding views
	6.7.7 Formatting date and time columns
	6.7.8 Formatting numbers in columns
	6.7.9 Indenting Response documents
	6.7.10 Sorting documents in views

	6.8 Designing a folder
	6.9 Managing access to views and folders
	6.9.1 Creating a Read access list
	6.9.2 Creating a Write access list

	6.10 Using navigators
	6.10.1 Navigator objects
	6.10.2 Navigator actions
	6.10.3 Creating a navigator
	6.10.4 Adding an action to a navigator object
	6.10.5 Adding an action using @Functions or LotusScript
	6.10.6 Displaying navigator when a database is opened

	6.11 New features in Domino 6
	6.12 Summary

	Chapter 7. Domino Design elements: agents
	7.1 About Domino agents
	7.2 Access to create Domino agents
	7.2.1 Restricted and unrestricted agents, methods and operations

	7.3 Creating an agent
	7.3.1 Naming the agent
	7.3.2 Scheduling the agent
	7.3.3 Selecting documents to be processed
	7.3.4 Specifying what an agent should do
	7.3.5 Displaying the pop-up menu of an agent
	7.3.6 Signing an agent

	7.4 Testing an agent
	7.4.1 Testing an agent during development
	7.4.2 Testing an agent before copying it to a live database
	7.4.3 Checking the Agent Log
	7.4.4 Debugging agents

	7.5 Enabling and disabling scheduled agents
	7.5.1 To disable and enable individual agents
	7.5.2 To disable all automated agents in a database

	7.6 Troubleshooting agents
	7.6.1 Agent is not running
	7.6.2 Agent Manager is not working
	7.6.3 Agents are running slowly
	7.6.4 Agent will not run on a particular server
	7.6.5 Debugging with NOTES.INI settings
	7.6.6 Debugging at the server console

	7.7 Agents and the Web
	7.7.1 The Document Context of a Web agent and CGI variables
	7.7.2 Agent output
	7.7.3 Running multiple instances of an agent
	7.7.4 WebQueryOpen and WebQuerySave agents
	7.7.5 Using the @URLOpen command to call agents

	7.8 Using agents (advanced topics)
	7.9 New features in Domino 6
	7.10 Summary

	Chapter 8. Domino Design elements: framesets
	8.1 Framesets
	8.1.1 Specifying frameset properties
	8.1.2 Specifying frame properties

	8.2 Changing the layout of a frameset
	8.3 New features in Domino Designer 6
	8.4 Summary

	Chapter 9. Domino Design elements: outlines
	9.1 Outline Designer
	9.2 Creating a new outline
	9.3 Embedded Outline

	Chapter 10. Domino design elements: shared resources
	10.1 Images
	10.2 Files
	10.3 Applets
	10.4 Style sheets
	10.5 Data connections
	10.5.1 Create a data source resource
	10.5.2 Create the DCR
	10.5.3 Set a database property
	10.5.4 Create fields on a form

	Chapter 11. Developing for multiple clients
	11.1 Plan your application
	11.1.1 Security settings
	11.1.2 Consider the use of graphics
	11.1.3 Examine your LotusScript code

	11.2 Designing the application
	11.2.1 Same or different forms for the Web and Notes
	11.2.2 Choosing fields
	11.2.3 Choosing actions
	11.2.4 How to deal with the Notes views
	11.2.5 Need of miscellaneous forms
	11.2.6 Designing the agents
	11.2.7 Be aware of multiple lookups
	11.2.8 Developing for PDA and mobile clients

	11.3 Take advantage of Domino 6
	11.4 Conclusion

	Chapter 12. New features in Domino 6
	12.1 User interface
	12.1.1 New design element navigator
	12.1.2 Bookmarks
	12.1.3 Custom design element folders
	12.1.4 Mouseover information on design elements
	12.1.5 Quick scroll
	12.1.6 Plus/minus indicators for the design list
	12.1.7 New features in design element views
	12.1.8 Modifying properties for multiple elements
	12.1.9 Design element locking
	12.1.10 Printing enhancements
	12.1.11 Shading

	12.2 Design Synopsis
	12.3 New Domino 6 design elements
	12.3.1 Shared Resources
	12.3.2 Shared Code

	12.4 The event model
	12.4.1 Targeting your code
	12.4.2 Removed events
	12.4.3 New preferred events
	12.4.4 New events

	12.5 @functions and @commands
	12.5.1 Why use them
	12.5.2 Limitations
	12.5.3 New programming features
	12.5.4 New and enhanced @formulas and @commands
	12.5.5 Looping
	12.5.6 Other enhancements

	12.6 LotusScript
	12.6.1 New classes
	12.6.2 Remote debugger
	12.6.3 Recompile all
	12.6.4 LotusScript to Java (LS2J)
	12.6.5 Automatically add Option Declare
	12.6.6 Language enhancements

	12.7 Auto complete
	12.7.1 LotusScript and auto complete
	12.7.2 HTML and auto complete
	12.7.3 Formulas and auto complete

	12.8 Agent enhancements
	12.8.1 New user interface
	12.8.2 Agent restriction list
	12.8.3 Access remote servers
	12.8.4 Run on behalf of
	12.8.5 Script libraries
	12.8.6 User activation
	12.8.7 Agent security
	12.8.8 Converting shared and private agents
	12.8.9 New console commands

	12.9 HTML
	12.9.1 Enabling the HTML Pane
	12.9.2 Adding code using the HTML Pane

	12.10 New UI elements
	12.10.1 Layers
	12.10.2 New field types
	12.10.3 Embedded editor

	12.11 Outline enhancements
	12.11.1 Computed outlines
	12.11.2 Pop-up text
	12.11.3 Customizable twisties
	12.11.4 Show folder unread information

	12.12 Actions enhancements
	12.12.1 General changes
	12.12.2 Computed labels
	12.12.3 Menu separator
	12.12.4 Checkbox action
	12.12.5 Sub actions
	12.12.6 Other features and enhancements

	12.13 View enhancements
	12.13.1 Column colors
	12.13.2 Context-sensitive actions
	12.13.3 Customized icons
	12.13.4 Background images/grids
	12.13.5 Customize twisties
	12.13.6 User customizations
	12.13.7 Create document from view
	12.13.8 Editing a document in a view
	12.13.9 Hide columns on-the-fly
	12.13.10 Creating views programmatically

	12.14 Field enhancements
	12.14.1 Field hints
	12.14.2 Size options
	12.14.3 Alignment options
	12.14.4 Border styles

	12.15 Form enhancements
	12.15.1 Render pass-through HTML in Notes

	12.16 Paragraph enhancements
	12.16.1 Language tagging
	12.16.2 Paragraph borders
	12.16.3 New section styles

	12.17 Embedded element enhancements
	12.17.1 Improved action bar support and enhanced styling
	12.17.2 Cross-database referencing
	12.17.3 Multiple embedded views on a page or form
	12.17.4 Deleting documents in an embedded view

	12.18 Table enhancements
	12.18.1 Autosize width to content
	12.18.2 New options
	12.18.3 Caption style

	12.19 Frameset enhancements
	12.19.1 Collapsible and captionable frames

	12.20 Tools menu
	12.20.1 Add a tool
	12.20.2 Customize your tools
	12.20.3 DXL utilities

	12.21 URL enhancements
	12.21.1 New and enhanced URL commands

	12.22 WebDav
	12.23 Summary

	Chapter 13. Securing your Domino application
	13.1 Overview
	13.2 Controlling access to Domino data
	13.2.1 Overview of Domino Security architecture

	13.3 Using the Access Control List to control access
	13.3.1 Setting up and refining the ACL
	13.3.2 Roles in the ACL
	13.3.3 Enforce Consistent ACL
	13.3.4 Maximum Internet Name and Password access
	13.3.5 Changing the ACL programmatically

	13.4 Using outline control to hide part of an Domino application
	13.5 Using directory links to control access to a Domino application
	13.6 Controlling access to views and forms
	13.6.1 Controlling access to forms
	13.6.2 Preventing printing, forwarding, and copying of documents

	13.7 Controlling access to documents
	13.7.1 Editor access
	13.7.2 Combining Readers and Authors fields
	13.7.3 Controlled access sections
	13.7.4 Use of Hide-When formulas
	13.7.5 Using encryption for field security

	13.8 Authentication on the Web
	13.8.1 HTTP Basic Authentication
	13.8.2 Session-based authentication
	13.8.3 Secure Sockets Layer (SSL)
	13.8.4 Domino and SSL
	13.8.5 When to use Internet security
	13.8.6 Defining Web users

	13.9 Programming considerations
	13.9.1 Using @UserRoles
	13.9.2 Using @UserName
	13.9.3 Using @ClientType
	13.9.4 Using @UserNameList
	13.9.5 Password field
	13.9.6 Controlling if users paste documents into the database
	13.9.7 Hiding the design of a database

	13.10 Other security options and considerations
	13.10.1 Using signatures for security
	13.10.2 Access control for HTML and other files
	13.10.3 APIs for customized authentication, encryption, and signing
	13.10.4 Backup and restore

	13.11 Developing a plan for securing your application
	13.11.1 Key design issues
	13.11.2 Distinguishing true security features

	13.12 New security features in Domino 6
	13.13 Summary

	Chapter 14. Programming for Domino 6
	14.1 Programming for Domino 6
	14.1.1 Choosing a programming language
	14.1.2 Simple Actions
	14.1.3 Formula language
	14.1.4 LotusScript

	14.2 The Domino Object Model
	14.2.1 Domino front-end user interface (UI) objects
	14.2.2 Domino back-end objects
	14.2.3 Object hierarchy
	14.2.4 Using Domino objects from LotusScript
	14.2.5 Understanding front-end classes and back-end classes
	14.2.6 Using Domino objects from Java
	14.2.7 Using LS to access Java objects and methods

	14.3 Programming with LotusScript
	14.3.1 The Event model
	14.3.2 Event type and sequence
	14.3.3 Action object
	14.3.4 Using LotusScript in Web applications
	14.3.5 How scripts and formulas are executed

	14.4 LotusScript programming tips and considerations
	14.4.1 General suggestions
	14.4.2 Use consistent variable names
	14.4.3 Reserved fields
	14.4.4 Using script libraries
	14.4.5 Using the Template database
	14.4.6 Catching errors at compile time
	14.4.7 Improving form performance
	14.4.8 When to use formulas and LotusScript
	14.4.9 Using Evaluate to combine LotusScript and formulas
	14.4.10 Making field value changes effective
	14.4.11 Using validation formulas and QuerySave/onSubmit
	14.4.12 Error handling
	14.4.13 Enabling the Debugger
	14.4.14 Tracing programs without a debugger

	14.5 Using JavaScript
	14.5.1 Using JavaScript in Domino Design elements
	14.5.2 Mapping Domino objects to the Document Object Model
	14.5.3 Examples of adding JavaScript to forms

	14.6 LiveConnect - JavaScript access to Domino classes
	14.6.1 Accessing an applet from JavaScript
	14.6.2 Accessing Java/CORBA applets via LiveConnect

	14.7 The API for Domino and Notes
	14.8 XML
	14.9 Sametime connectivity
	14.9.1 What is Sametime
	14.9.2 What can Sametime do
	14.9.3 Power of Sametime
	14.9.4 Sametime-enabling Domino applications

	14.10 Integration with Microsoft technologies
	14.10.1 What is COM
	14.10.2 COM support in Domino
	14.10.3 New features in Domino 6

	14.11 WebSphere integration
	14.11.1 What is WebSphere
	14.11.2 Domino and WebSphere defined

	14.12 Java
	14.12.1 About Java Domino classes
	14.12.2 Java coding conventions
	14.12.3 Agents, applets and applications
	14.12.4 Adding CORBA
	14.12.5 Benefits of using CORBA
	14.12.6 How and when to use CORBA
	14.12.7 Compiling and running a Java program
	14.12.8 Runtime requirements
	14.12.9 Remote calls to lotus.domino package
	14.12.10 Applet calls to lotus.domino package
	14.12.11 Creating a Java agent
	14.12.12 Java Database Connectivity (DBC)
	14.12.13 Servlets
	14.12.14 Java Server Page (JSP)
	14.12.15 Script libraries

	14.13 Summary

	Chapter 15. Rich text programming
	15.1 What is rich text
	15.2 Summary versus non-summary fields
	15.3 Rich text and the Notes APIs
	15.4 New rich text capabilities in Notes 6
	15.5 Rich text in macro language
	15.5.1 Macro language functions to handle rich text
	15.5.2 Working with rich text in edit mode
	15.5.3 Example application: default value for rich text field

	15.6 Working with rich text in LotusScript and Java
	15.6.1 The LotusScript rich text classes
	15.6.2 Creating and appending to rich text
	15.6.3 Navigating and inserting into rich text
	15.6.4 Using a NotesRichTextRange to read text or limit a search
	15.6.5 Working with rich text in edit mode

	15.7 Using rich text from other apps via COM/OLE

	Chapter 16. XML
	16.1 What is XML
	16.2 XML and Domino
	16.3 Basic XML use in Domino Designer
	16.3.1 XML for forms, views, or pages

	16.4 XML tools (DXL Utilities)
	16.4.1 Exporter
	16.4.2 Viewer
	16.4.3 Transformer

	16.5 XML and LotusScript
	16.5.1 LotusScript agents
	16.5.2 New support for DXL

	16.6 XML and Java
	16.7 Summary

	Chapter 17. Web services in Domino
	17.1 What is a Web service
	17.2 Web services and Domino

	Appendix A. Domino and connectivity
	CORBA/IIOP
	OLE Automation
	LSX Toolkit/Lotus Custom Object Toolkit
	DECS
	Lotus Enterprise Integrator
	NotesSQL
	ODBC
	JDBC

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

